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ABSTRACT
Machine learning and data mining have found a multitude
of successful applications in microarray analysis, with gene
clustering and classification of tissue samples being widely
cited examples. Low-level microarray analysis – often as-
sociated with the pre-processing stage within the microar-
ray life-cycle – has increasingly become an area of active
research, traditionally involving techniques from classical
statistics. This paper explores opportunities for the applica-
tion of machine learning and data mining methods to several
important low-level microarray analysis problems: monitor-
ing gene expression, transcript discovery, genotyping and re-
sequencing. Relevant methods and ideas from the machine
learning community include semi-supervised learning, learn-
ing from heterogeneous data, and incremental learning.
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1. INTRODUCTION
DNA microarrays have revolutionized biological research ov-
er the short time since their inception [2; 27; 28; 29]. Al-
though most widely used for parallel measurement of gene
expression [27; 28], microarrays are starting to find common
application in other areas of genomics and transcriptomics,
including genomic re-sequencing [30; 31], genotyping [32;
33], and transcript discovery [34].

Research labs armed with microarrays have been able to
partake in a range of studies, including finding gene func-
tion [35; 36; 37]; correcting mistaken database annotations
[36; 7]; performing linkage analyses; determining specific
genes involved in biological pathways; identifying genes that
are important at certain times of development (or that are
turned on/off over a course of treatment); elucidating gene
regulatory networks [13]; diagnosing disease in tissue sam-

Figure 1: The relationship between low-level and high-level
microarray analysis.

ples [38; 39; 40; 41]; and even identifying medical practi-
tioners’ misdiagnoses [38]. The common thread among these
high-level microarray analysis problems is that they answer
sophisticated questions of direct biological interest to medi-
cal researchers (such as “which genes are being co-expressed
under treatment X?”), where the raw data used are esti-
mates of biologically meaningful parameters (such as the
expression level estimates for thousands of genes).

In contrast to these so-called high-level problems, low-level
microarray analysis [19] is concerned with the preceding step
in the microarray assay cycle (Figure 1) – given raw data
straight from a scanner which has no direct biological in-
terpretation, clean and summarize this data to produce the
biologically meaningful parameter estimates (such as expres-
sion level estimates) that are later used in high-level analy-
ses.

In low-level analysis, more consideration is generally given to
the behavior of the underlying molecular biology, microarray
technology, and experimental design than in high-level anal-
ysis. This makes generative methods readily applicable in
low-level problems, facilitating the formulation of confidence



statements such as p-values in gene expression calls. Hence,
while high-level problems have been tackled with discrimina-
tive approaches, such as those found in machine learning and
data mining, in addition to classical statistical methods, the
low-level analysis community has traditionally called upon
only the latter.

In this paper we argue that low-level microarray analysis
poses a number of interesting problems for the data mining
and machine learning community, distinct to the traditional
high-level microarray problems. These problems are rele-
vant to the long-term success of DNA microarrays and are
already topics of active research in the low-level microarray
analysis community. It is our hope that this position paper
motivates and enables further machine learning research in
the area. Although we will focus on high density oligonu-
cleotide microarrays, particularly those of the Affymetrix
GeneChip variety, the underlying concepts and opportuni-
ties remain the same for related technologies. Throughout
the paper, we distinguish machine learning from statistics.
While these disciplines are closely related and serve as foun-
dations for inference in microarray analysis, the distinction
does have content. In our view, classical statistics is gener-
ative, dealing with relatively low-dimensional data and pa-
rameter spaces, while machine learning is often discrimina-
tive in nature and explicitly addresses computational issues
in high-dimensional data analysis.

Section 2 reviews relevant background ideas from machine
learning. For an overview of the background molecular biol-
ogy and microarray technology, see the guest editorial else-
where in this issue. The low-level problems of absolute and
differential expression level summarization, expression de-
tection, and transcript discovery are reviewed in Section 3,
along with suggested applications of machine learning ap-
proaches to these problems. Sections 4 and 5 similarly cover
microarray-based genotyping and re-sequencing. Finally,
Section 6 concludes the paper.

2. BACKGROUND MACHINE LEARNING
We assume familiarity with the notions of unsupervised learn-
ing (clustering) and supervised learning (classification and
regression). As many of the low-level analysis problems dis-
cussed below are amenable to learning from partially labeled
data, learning from heterogeneous data, and incremental
learning, we briefly review these paradigms here.

2.1 Learning from Partially Labeled Data
Given an i.i.d. labeled sample {(xi, yi)}n

i=1 drawn from the
unknown and fixed joint distribution F (x, y), and an i.i.d.
unlabeled sample {xi}m

i=n+1 drawn from the marginal distri-
bution F (x), the problem of learning from partially labeled
data [22; 20] is to use the data in choosing a function ĝm(X)
approximating E(Y |X) where (X, Y ) ∼ F . This problem
has been motivated by a number of applications where only
limited labeled data is present, say due to expense, while un-
labeled data is plentiful [16]. This is particularly the case in
the areas of text classification, medical research, and com-
puter vision [42], within which much of the research into
learning from partially labeled data has occurred.

This problem, also called the labeled-unlabeled data prob-
lem [42], has been explored under a number of closely-related
guises. Some of the earliest approaches used so-called hybrid
learners [6], where an unsupervised learning algorithm as-

signs labels to the unlabeled data, thereby expanding the la-
beled dataset for subsequent supervised learning. The term
multimodal learning is sometimes used to refer to partially
labeled learning in the computer vision literature [17]. Co-
training is a form of partially labeled learning where the two
datasets may be of different types and one proceeds by us-
ing the unlabeled data to bootstrap weak learners trained
on the labeled data [16].

More recently, semi-supervised learning [25] and transduc-
tive learning [26] have gained popularity. Equivalent to par-
tially labeled learning, semi-supervised learning includes a
number of successful algorithms, such as those based on the
support vector machine (SVM) [25; 8]. Transductive learn-
ers, on the other hand, aim to predict labels for just the
unlabeled data at hand, without producing the inductive
approximation ĝm. This approach can be used to gener-
alize the aforementioned hybrid learners, whose unsuper-
vised step typically ignores the labeled data. In particu-
lar, it is shown in [26] that direct transduction is more ef-
fective than the traditional two-step approach of induction
followed by deduction. A number of transductive schemes
have been proposed, such as those based on the SVM [4; 25],
a graph-based transductive learner [9], and a leave-one-out
error ridge regression method [26]. Joachims [25] describes
an approximate solver for the semi-supervised SVM which
utilizes a fast SVM optimizer as an inner loop.

The story is not all good. [10] tells us that while unlabeled
data may be useful, labeled examples are exponentially more
valuable in a suitable sense. [43] tells us that unlabeled data
may lead the transductive SVM to maximize the wrong mar-
gin, and in [42] it is shown that unlabeled data may in fact
degrade classifier performance under certain conditions re-
lating the risk and empirical risk. Nonetheless, learning from
partially labeled data has enjoyed great success in many the-
oretical and empirical studies [16; 42; 44; 43].

We are especially interested in partially labeled learning as
an approach to the low-level microarray analysis problems
discussed in Sections 3–5, where we have relatively few la-
beled examples but an abundant source of unlabeled data.
[45] is a recent example of partially labeled learning applied
to high-level microarray analysis. There, the problem of
predicting gene function is tackled using a semi-supervised
scheme trained on a two-component dataset of DNA mi-
croarray expression profiles and phylogenetic profiles from
whole-genome sequence comparisons. This leads us to the
next relevant idea from machine learning.

2.2 Learning from Heterogeneous Data
Learning from heterogeneous data is the process of learning
from training data, labeled or not, that can be partitioned
into subsets, each of which contains a different type of data
structure or originates from a different source. This notion
is equivalent to the methods of data fusion [5].

Research into learning from heterogeneous data tends to
be quite domain-specific and has enjoyed increasing interest
from the bioinformatics community in particular (e.g., [18]).
[46] presents a kernel-based framework for learning from het-
erogeneous descriptions of a collection of genes, proteins or
other entities. The authors demonstrate the method’s supe-
riority to the homogeneous case on the problem of predict-
ing yeast protein function using knowledge of amino acid
sequence, protein complex data, gene expression data, and
known protein-protein interactions.



[37] proposes an SVM method for classifying gene function
from microarray expression estimates and phylogenetic pro-
files. This is achieved through the construction of an ex-
plicitly heterogeneous kernel: first separate kernels are con-
structed for each data type, taking into account high-order
within-type correlations, then these kernels are combined,
ignoring high-order across-type correlations.

Our interest in learning from heterogeneous data arises be-
cause several sources of knowledge relevant to low-level mi-
croarray analysis are available, and incorporating such prob-
lem domain knowledge has been shown to improve the per-
formance of learning algorithms in the past.

2.3 Incremental Learning
Incremental learning is focused on learning from data pre-
sented sequentially, where the model may be required to
make predictions on unseen data during training. This is in
contrast to cases where all training occurs before any pre-
dictions are made (batch learning), and is similar to online
learning [24].

A number of incremental learning algorithms have been pro-
posed and applied in the literature. For example, several
incremental support vector machines have been studied [24;
21; 47]. In [48], incremental learning is applied to distributed
video surveillance. SVM algorithm parameter selection is
investigated in [47]. [21] applies an incremental SVM to de-
tecting concept drift – the problem of varying distributions
over long periods of data gathering – and to adaptive classi-
fication of documents with respect to user interest. An exact
incremental SVM is proposed in [24], where decremental un-
learning of incremental training data is possible. This can
be used to efficiently evaluate the computationally-expensive
leave-one-out error measure.

Due to the relatively small sizes of datasets typically avail-
able in low-level microarray analysis, there is great potential
for learners that can incrementally incorporate new data
gathered in the lab, thereby improving estimator perfor-
mance specific to that lab’s patterns of microarray assay.

3. EXPRESSION ANALYSIS
The most successful application of DNA microarray tech-
nology to date has been to gene expression analysis. Tra-
ditionally, this has involved estimating gene expression lev-
els (Section 3.1), an area that is being addressed through
successful statistical methods and active statistics research.
However, the task of determining transcription activity over
entire chromosomes (Section 3.2) is less well developed and
offers serious opportunities for machine learning.

3.1 Gene Expression Monitoring

3.1.1 The Problem
Traditional microarrays measure mRNA target abundance
using the scanned intensities of fluorescence from tagged
molecules hybridized to substrate-attached probes [29]. The
brighter the intensity within a cell of identical probes, the
more hybridization there has been to those probes (Fig-
ure 2a). The scanned intensity, then, roughly corresponds
to target abundance.

Since probes are limited in length while targets may be thou-
sands of bases long, the GeneChip uses a set of probes to
detect each target nucleic acid. The probes are spread out

Figure 2: Probe-level features for expression level summa-
rization: (a) a cell of probes; (b) target transcript, per-
fect match probe and mis-match probe sequences; and (c)
scanned and image-analyzed probe-level intensities.

along a 600 base pair region close to the 3’ end of the tran-
script. To measure the effects of cross-hybridization, or un-
intended hybridization of target A to the probes intended for
target B, a system of probe pairs is used. In each pair, a per-
fect match (PM) probe contains the target’s exact comple-
mentary sequence, while a mismatch (MM) probe replaces
the middle base of the perfect match probe with its Watson-
Crick complement. In this way, a target is probed by a probe
set of 11-20 PM-MM probe pairs. The aim is roughly for
the PMs to measure signal plus noise and for the MMs to
measure just noise, so that the signal is revealed using some
function of (PM - MM). Figure 2b depicts the probe set ar-
rangement, while Figure 2c gives an example of the scanned
intensities. We may now define the expression level summa-
rization problem.

Low-level Problem 1. Given a probe set’s intensities (pos-
sibly after background correction and normalization), the
expression level summarization problem is to estimate the
amount of target transcript present in the sample.

While the expression level summary aims to estimate gene
expression level from the features of Figure 2, expression
detection is concerned with determining the presence of any
gene expression at all.

Low-level Problem 2. Given a probe set’s intensities, pos-
sibly normalized, the expression detection problem is to pre-
dict whether the target transcript is present (P) or absent
(A) in the sample, or otherwise call marginal (M) if it is too
difficult to tell. In addition to the P/M/A detection call, we
wish to state a confidence level in the call, such as a p-value.

Detection calls are not as widely utilized as expression level
estimates. They are often used, for example, to filter out
genes with negligible expression before performing computat-
ionally-expensive high-level analyses, such as clustering on
gene expression profiles.



The previous two problems dealt with estimates based on a
single probe-set read from a single array. Comparative stud-
ies, on the other hand, involve assaying two arrays, one the
baseline and the other the experiment, followed by compu-
tation of a single comparative estimate.

Low-level Problem 3. Given two sets of intensities, possi-
bly normalized, for the same probe set on two arrays:

a. The differential expression level summarization problem
is to estimate the relative abundance of target transcript
on each array.

b. The comparison call problem is to predict whether the
expression of the target has increased, not changed, or
decreased from one chip to the other. As in Low-level
Problem 2, a statement of confidence in the call should
be supplied.

The log-ratio of expression levels for a target is sometimes
known as the relative expression level [3] and is closely re-
lated to the notion of fold change (which is sign(log-ratio)×
2log-ratio). Comparison calls are sometimes referred to as
change calls. An advantage of working with these compar-
ative estimates is that probe-specific affinities (one cause
of undesired variation) are approximately cancelled out by
taking ratios [3].

All of these problems are complicated by exogenous sources
of variation which cloud the quantities we are interested in.
[49] proposes a breakdown of the sources of variation in mi-
croarray experiments into intrinsic noise (variation inherent
in the experiment’s subjects), intermediate noise (arising
for example from laboratory procedures), and measurement
error (variation due to the instrumentation, such as array
manufacture, scanning, or in silico processing).

3.1.2 Current Approaches
At the level of microarray design, sophisticated probe model-
ing and combinatorial techniques are used to reduce probe-
specific effects and cross-hybridization. However, much of
the unwanted variation identified above must still be tack-
led during low-level analysis. This means that care must
be taken with the relevant statistical issues. For example,
in experimental design, we must trade off between biologi-
cal replicates (across samples) and technical replicates (one
sample across chips). Background correction and normal-
ization, for reducing systematic variation within and across
replicate arrays, also surface as major considerations [19;
11].

Three popular approaches to Low-level Problem 1 [11] are
the Affymetrix microarray suite (MAS) 5.0 signal measure
[14; 3; 1], the robust multi-array average (RMA) [50; 11]
and the model-based expression index (MBEI) [51].

MAS5 first performs background correction by subtracting a
background estimate for each cell, computed by partitioning
the array into rectangular zones and setting the background
of each zone to that zone’s second-percentile intensity. Next
MAS5 subtracts an “ideal mismatch value” from each PM
intensity and log-transforms the adjusted PMs to stabilize
the variance. A robust mean is computed for the resulting
values using a biweight estimator, and finally this value is
scaled using a trimmed mean to produce the signal estimate.

RMA proceeds by first performing quantile normalization
[52], which puts the probe intensity distributions across repli-
cate arrays on the same scale. RMA then models the PMs

Figure 3: An ROC curve: (0, 0) and (1, 1) correspond to
the “always negative” and “always positive” classifiers re-
spectively. The closer to the ideal point (0, 1) the better.
Neither of the two families A or B dominates the other. In-
stead, one or the other is better according to the desired
trade-off between FP and TP.

as background plus signal, where the signal is exponentially
and the background normally distributed – MM intensities
are not used in RMA. A robust additive model is used to
model the PM signal (in log-space) as the sum of the log
scale expression level, a probe affinity effect, and an i.i.d.
error term. Finally, median polish estimates the model pa-
rameters and produces the log-scale expression level sum-
mary.

MBEI fits PMi,j−MMi,j = θiφj +εi,j , using maximum like-
lihood to estimate the per-gene expression levels θi. Here the
φj are probe-specific affinities and the εi,j are i.i.d. normal
errors.

Although it may seem that expression detection is just a
matter of thresholding expression level estimates, this has
proven not to be the case [53]. It is known that expres-
sion level estimators often have difficulty at low levels of ex-
pression, while detection algorithms are designed with this
setting in mind.

The most widely used detection algorithm for the GeneChip
is a method based on a Wilcoxon signed-rank test [54; 3;
55]. This algorithm corresponds to a hypothesis test of H0 :
median(PMi−MMi

PMi+MMi
) = τ versus H1 : median(PMi−MMi

PMi+MMi
) >

τ , where τ is a small positive constant. These hypotheses
correspond to absence and presence of expression, respec-
tively. The test is conducted using a p-value for a sum of
signed ranks Ri = PMi−MMi

PMi+MMi
− τ . The p-value is thresh-

olded so that values in [0, α1), [α1, α2), and [α2, 1] result
in present, marginal, and absent calls, respectively. Here
0 < α1 < α2 < 0.5 control the trade-off between false posi-
tives (FP) and true positives (TP).

Recently, a number of alternate rank sum-based algorithms
have been proposed [53]. One in particular – a variant on
the MAS5 method where scores are set to Ri = log PMi

MMi
–

has been shown to outperform MAS5 detection in a range
of real-world situations. One aspect of the study in [53]
of particular interest is the use of the Receiver Operating
Characteristic (ROC) Convex Hull method [56] for compar-
ing competing classifiers on a spike-in test set.

ROC curves (see Figure 3) characterize the classification
performance of a family of classifiers parameterized by a tun-



able parameter that controls the FP-TP trade-off. For ex-
ample, as the level of a hypothesis test is decreased, the rate
of false positive rejections decreases (by definition), while
the rate of false negative acceptances will typically go up.
An ROC curve encodes this trade-off, extending the notion
of contingency table to an entire curve. It is a more expres-
sive object than accuracy, which boils performance down to
one number [56; 57].

Comparing ROC curves has traditionally been achieved by
either choosing the “clear winner” (in the rare case of dom-
ination [57]), or choosing the maximizer of the Area Under
Curve (AUC). Although AUC works in some cases, it gives
equal credit to performance over all misclassification cost
and class size settings – usually an undesirable strategy if
any domain knowledge is available. The ROC Convex Hull
method, on the other hand, relates expected-cost optimality
to conditions on relative misclassification cost and class size,
so that the typical case of semi-dominance (as in Figure 3)
can be handled in a principled way – rather than selecting
p-value thresholds by hand, end-users are provided with the
right classifier and thresholds by the method. This use of
the ROCCH method demonstrates a surprising application
of machine learning to low-level microarray analysis.

Many of these absolute expression algorithms have their
comparative analogues. For example, MAS5 produces the
signal log ratio with an associated confidence interval, us-
ing a biweight algorithm [14; 3]. MAS5 also implements a
comparison call based on the Wilcoxon signed-rank sum test,
just as in the absolute MAS5 detection algorithm above [55].

While the Affymetrix microarray suite is the software pack-
age bundled with the GeneChip, the Bioconductor project
[15] – an open-source set of R [12] packages for bioinformat-
ics data analysis – has been gaining popularity and imple-
ments most of the methods discussed here.

3.1.3 Open Problems
While Low-level Problem 1 involves prediction of continuous
expression levels (non-negative real values) given a vector of
(non-negative real) perfect match and mismatch intensities,
with total length between 22 and 40, Low-level Problem 2 is
a 3-class classification problem with call confidence levels.

Open Problem 1. In the respective settings of Low-level
Problems 1–3:

a. What machine learning techniques are competitive with
algorithms based on classical statistical methods for ex-
pression level estimation?

b. Which machine learning classifiers are competitive for ex-
pression detection?

c. What machine learning methods achieve high performance
on the comparative analogues of the previous two prob-
lems, posed on the appropriate product space of microar-
ray measurements?

Comparisons for expression level estimators might be made
based on bias and variance, computational efficiency, and bi-
ological relevance of learned models. The ROCCH method
is ideal for detector comparison. Issues of background cor-
rection and normalization across multiple arrays must likely
also be addressed to enable competitiveness with the state
of the art.

Research into applying semi-supervised, heterogeneous data
and incremental learners to gene expression monitoring is di-
rectly motivated by the proportion of labeled to unlabeled
data available, the existence of GeneChip domain knowl-
edge, and the endemic nature of microarray assays that are
continually performed in individual research labs. Biologists
could augment the limited labeled probe-level data available
with relatively abundant unlabeled data. Labeled data can
be procured, for example, from bacterial control experiments
with known concentrations, called spike-in assays, and bac-
terial control probe sets that are present in some GeneChips
for calibration purposes. The former source of labeled data
is the more useful for this problem, as it provides examples
with a range of labels. Unfortunately, spike-in studies are
rare because they are not of independent scientific interest:
they are only performed for low-level microarray research.
For the few spike-in assays that are available, only a small
number of targets are spiked in at an equally small number of
concentrations (typically ≈10). Unlabeled data, in contrast,
could be taken from the large collection of available biolog-
ically relevant assays; each one providing tens of thousands
of data points. Beyond probe intensities, other data sources
could include probe sequences and probe-affinity informa-
tion derived from probe models. Such information is closely
related to the hybridization process and might be of use
in expression level estimation: both target and non-specific
hybridization are known to be probe-dependent. Although
labeled data from spike-in studies are of greatest utility for
learning [10], the quantity of unlabeled data produced by
a series of biologically interesting microarray assays in any
given lab suggests a semi-supervised incremental approach.

Since the ROCCH involves taking a pointwise maximum
over the individual noisy ROC curves, it incorporates a pos-
sibly large degree of uncertainty. It should be possible to
extend the results of [53] to quantify this property.

Open Problem 2. Can the ROC Convex Hull method
of [56] be extended to provide confidence intervals for its
conditions on expected-cost optimality?

3.2 Transcript Discovery

3.2.1 The Problem
The applications to expression monitoring described above
are all related to addressing questions about pre-defined
transcripts. More precisely, the vast majority of expres-
sion analysis is performed using probes interrogating only
a small sub-sequence of each transcript. This has clearly
been a useful approach, but there are at least two potential
drawbacks. One is that we can only monitor the expression
of genes known to exist at the time of the array’s design.
Even in a genome as well-studied as that of the human, new
transcripts are routinely discovered. Another is that in di-
rectly monitoring only a sub-sequence of the transcript, it
will often be impossible to distinguish between alternatively
spliced forms of the same gene (which may have very differ-
ent functional roles).

An alternative approach is to use arrays with probes tiled
uniformly across genomic sequence, without regard to cur-
rent knowledge of transcription. Such genome tiling ar-
rays have been used to monitor expression in all the non-
repetitive sequence of human chromosomes 21 and 22 [34],
and more widespread use is underway.



The problems arising in the analysis of data from genome
tiling arrays are essentially the same as those for the ex-
pression monitoring arrays described above: estimation of
expression level, detection of presence, and detection of dif-
ferential expression. There is, however, the additional chal-
lenge of determining the number of distinct transcripts and
their location within the tiled genomic region.

Low-level Problem 4. The problem of transcript discovery
can be viewed in two steps:

a. Determining the exon structure of genes within a tiled
region; and

b. Determining which exons should be classified together as
part of a single gene’s transcript.

3.2.2 Current Approaches
A simple heuristic approach is taken in [34], in which PM-
MM probe pairs are classified as positive or negative based
on thresholds applied to the difference and ratio of the PM
and MM values. Positions classified as positive and located
close to other positive positions are grouped together to form
predicted exons.

A more effective approach [58] is based on the application of
a Wilcoxon signed-rank test in a sliding window along the
genomic sequence, using the associated Hodges-Lehmann es-
timator for estimation of expression level. Grouping into
exons is achieved by thresholding on present call p-values or
estimated expression level, then defining groups of probes
exceeding the threshold to be exons.

3.2.3 Open Problems
The problem of detecting exons based on probe intensities
(Low-level Problem 4a) is very similar to the problem of
absolute expression detection (Low-level Problem 2). For
example, the exon detection method of [58] and the MAS5
expression detection algorithm [55] are both built around
the Wilcoxon signed-rank test. The problem of finding ex-
ons has been addressed as described, but the methods are
heuristic and there is plenty of room for improvement. Asso-
ciating exons to form transcripts (Low-level Problem 4b) has
been addressed in a large experiment across almost 70 ex-
perimental pairs using a heuristic correlation-based method;
again, this presents an opportunity for research into more
effective methods.

Open Problem 3. Are there machine learning methods
that are able to out-perform current classical statistical meth-
ods in transcript discovery as defined in Low-Level Prob-
lem 4?

One possibility which appears well suited to the problem is
the use of hidden Markov models where the underlying un-
observed Markov chain is over states representing expressed
versus non-expressed sequence. The distribution of the ob-
served probe intensities would depend on the underlying hid-
den state. Another possible approach, considering the suc-
cess which has been demonstrated in predicting genes from
sequence data alone, would also be to integrate array-derived
data with sequence information in prediction of transcripts.

4. GENOTYPING

4.1 The Problem
Descriptions of genome sequencing efforts such as the hu-
man genome project often lend the impression that there
is a unique genomic sequence associated with each species.
This is a useful and approximately correct abstraction. But
in fact, any two individuals picked at random from a species
population will have differing nucleotides at a small fraction
of the corresponding positions in their genomes. Such single-
nucleotide polymorphisms, or SNPs, help form the basis of
genetically-determined variation across individuals. Biolo-
gists estimate that about one position in 1,000 in the human
genome is a SNP. With over 3 billion bases of genomic DNA,
we see that SNPs number in the several millions. Although
there are other kinds of individual genomic variation, such
as insertions, deletions, and duplications of DNA segments,
our focus here is SNPs.

Further complicating the picture is the fact that humans are
diploid organisms—each person possesses two complete but
different copies of the human genome, one inherited from the
mother and one from the father. Now consider a polymor-
phic position, or locus, at which two different bases occur
in the population, say G and T. These variants are called
the alleles at the locus, so in this case we are describing a
biallelic SNP. A given individual will have inherited either a
G or T in the paternal genome, and the same is true of the
maternal genome. Thus there are three possible genotypes,
or individual genetic signatures, at this SNP: they are de-
noted GG, TT, and GT. We do not distinguish the last case
from TG, since there is no inherent ordering of the paternal
and maternal genomes at a given polymorphic position.

We refer generically to the alleles of a biallelic SNP as A and
B. Biological evidence suggests that essentially all SNPs are
biallelic in humans. The genotyping problem, then, is to es-
tablish an individual’s genotype as AA, BB, or AB for as
many SNPs as possible in the human genome. The com-
pletion of the human genome project means that one has
recourse to the full genomic sequence surrounding a SNP
to help solve the genotyping problem. Furthermore, various
large-scale public projects to locate SNPs and identify their
alleles exist, notably The SNP Consortium (TSC); the data
they generate may also be utilized for genotyping.

The major drawback to traditional genotyping protocols are
their lack of parallelism, with consequent expense in terms
of material and labor. In contrast, Kennedy et al. [33] de-
scribe whole-genome sampling analysis (WGSA), which en-
ables massively parallel genotyping via genotyping microar-
rays.

For the Affymetrix Mapping 10k Array, which genotypes
approximately 10,000 SNPs across the human genome, each
SNP actually has 56 corresponding probes, collectively term-
ed a miniblock. The miniblock has 7 probe quartets for the
SNP’s flanking region on the forward strand and another 7
probe quartets for the reverse complement strand, so 4× 7×
2 yields 56 probes. Each probe quartet in turn corresponds
to a 25-mer in which the SNP is at one of 7 offsets from the
central position. The four probes within a probe quartet
differ in the base they put at the SNP: a perfect match to
the A allele, a perfect match to the B allele, and mismatches
for each.

Low-level Problem 5. Given a SNP’s 56-vector of miniblo-



ck probe intensities, the genotype calling problem is to pre-
dict the individual’s corresponding alleles as AA, BB or AB.

Write PM(A), PM(B), MM(A), and MM(B) for the probe
intensities within a quartet. We would then hope that an
AA individual has PM(A) > MM(A) but PM(B) ≈ MM(B),
for all probe quartets on both strands. For a BB individual,
we hope to find just the opposite effect, and an AB indi-
vidual should have both PM(A) > MM(A) and PM(B) >
MM(B). The mismatch probes in each quartet act as con-
trols, establishing the level of nonspecific hybridization for
their corresponding perfect match probes. The presence of
multiple probe quartets allows for the determination of geno-
type even when one strand and/or some offsets do not yield
reliable hybridization, say for biochemical reasons.

4.2 Current Approaches
Low-level Problem 5 is a three-class classification problem.
In many machine learning applications, the metric of interest
for competing classifiers is predictive accuracy, in this case
the probability of correctly genotyping a new individual’s
SNP based on the miniblock vector. However, in the kinds
of genetic studies which take large numbers of genotypes as
input, there is usually an explicit requirement that geno-
type predictions have a prespecified accuracy, often 99%.
To attain such accuracy, it is usually permissible for some
fraction of genotypable SNPs to be no-calls; that is, the clas-
sifier can refuse to predict a genotype for some miniblocks.
When comparing genotypers, our interest therefore lies in
the trade-off between the rate of no-calls and the accuracy
attained on those SNPs which are called. For example, some
studies consider the punt rate, or lowest no-call rate which
yields a prespecified accuracy level on the called SNPs.

A simple unsupervised approach to training a genotyper
is to ignore available labels during training, instead using
these labels to subsequently assess the trade-off between ac-
curacy and no-call rate for the trained model. This is the
strategy pursued by MPAM (modified partitioning around
medoids) [59], the discriminative clustering genotyper used
for the Affymetrix 10k array. An alternative approach, us-
ing a parametric generative model for the clustering, will
be described elsewhere. It resembles ABACUS, a model
studied in the context of re-sequencing microarrays [31] (see
Section 5).

4.3 Open Problems

Open Problem 4. Are there machine learning methods
that are able to meet typical accuracy and punt-rate specifi-
cations on the genotype calling problem?

In order to choose a genotyper using supervised learning,
we need labels (true genotypes) along with corresponding
miniblock reads from genotyping arrays. Unfortunately, the-
re is no large-scale set of publicly available genotypes. In-
stead, one makes do with modestly-sized sets of genotypes
available commercially from companies using smaller-scale
techniques. Of course, no genotyping method is error-free,
so in practice one measures concordance with reference geno-
types. If the concordance is high enough, the remaining
cases of disagreement between a candidate genotyper and
the reference genotypes can be resolved via the older labor-
intensive methods. The incomplete nature of reference geno-
type data leads naturally to the setting of semi-supervised

learning. Rather than falling back to unsupervised methods
such as those described above, we may consider employing
more general semi-supervised learners as described in Sec-
tion 2.1. Additionally, the methods of [23] could be used
to incorporate low-level physical parametric models of hy-
bridization into a kernel-based classifier.

5. RE-SEQUENCING

5.1 The Problem
As explained in Section 4, within a single species genomic
sequence will vary slightly from one individual to the next.
While Low-level Problem 5 focuses on the determination of
genotype at a position known in advance to be polymorphic,
the problem described in this section concerns locating such
polymorphic sites in the first place.

The usual starting point is a newly-sequenced genome, such
as the recently-finished human genome. It is often the case
that, based on previous research, an investigator will be in-
terested in detailed study of variation in a particular ge-
nomic region (say on the order of tens or hundreds of kilo-
bases) and wants to re-sequence this region in a large num-
ber of individuals. Such re-sequencing allows for identifi-
cation of the small subset of polymorphic locations. Here
we consider the more recent challenges of microarray-based
re-sequencing of diploid genomic DNA.

A typical re-sequencing array uses eight probes to inter-
rogate each base of the monitored sequence. These eight
probes comprise two quartets, one for the forward strand
and one for the reverse. Each quartet is formed of 25-mer
probes perfectly complementary to the 25 bases of the ref-
erence sequence centered on the interrogated base, but with
all four possible bases used at the central position.

Low-level Problem 6. The goal of the re-sequencing prob-
lem is to start with a set of probe intensities and classify
each position as being one of A, C, G, T, AC, AG, AT, CG,
CT, GT, or N, where N represents a ‘no call’ (due to sample
failure or ambiguous data).

The intuition is that for a homozygous position, one of the
four probes should be much brighter relative to the others
on each strand, and for a heterozygous position, two probes
corresponding to the two bases of a SNP should be brighter
on each strand. Of particular interest are positions in which
the called base is heterozygous, or homozygous and different
to the reference sequence, as such positions exhibit polymor-
phism and are candidate positions for explaining phenotypic
differences between individuals.

At face value, this classification problem is much harder than
the genotyping problem. There are fewer probes to start
with (a miniblock of 8 rather than 40 or more) and more
categories (11 as opposed to 3 or 4) into which to classify.

5.2 Current Approaches
The most recent analysis of the kind of re-sequencing ar-
ray discussed here [31] is based on modeling pixel intensities
within each probe as independent random variables with
a common mean and variance. The model for a homozy-
gous base is that, on each strand, the probe correspond-
ing to the base has one mean and variance, and the other
three probes have another. The means and variance are es-
timated by maximum likelihood, and the likelihood of the



model is evaluated. The model for each of the six heterozy-
gous possibilities is similar, except two probes correspond to
each heterozygote model and the other two are background.
The likelihoods (overall and for each strand) are converted
to scores and, provided the maximum score exceeds some
threshold, the best-scoring model is chosen as the base call.
A number of other filters that deal with the signal absence,
signal saturation, sample failure, and so on are applied, as is
an iterative procedure to account for bias in the background
probes. This method, called ABACUS, was found to make
base calls at over 80% of all bases, with an estimate accuracy
in excess of 99% at the bases which were called.

5.3 Open Problems
A good base-calling method for re-sequencing arrays already
exists in ABACUS, but there remains room for improve-
ment. A recent and improved implementation [60] of the
ABACUS method on a new genomic region found the over-
all sequencing accuracy to be on the order of 99.998%, but
the accuracy on heterozygote calls to be about 96.7%. Bi-
ologists would value highly an improvement in heterozygote
call accuracy.

Open Problem 5. Can a supervised learning method be
used to call bases in re-sequencing arrays with accuracy, in
particular heterozygote accuracy, in excess of the accuracies
achieved by the more classic statistical approaches used to
date?

Considering the ongoing efforts of SNP detection projects,
there is an abundance of labeled data available, so the prob-
lem seems quite amenable to machine learning approaches.
As with the genotyping problem, it would be desirable to
have a measure of confidence associated with base calls. It
may also be useful to take into account the sequences of the
25-mer probes, as there are known sequence-specific effects
on the probe intensities.

6. CONCLUSIONS
We have described a variety of low-level problems in mi-
croarray data analysis and suggested the applicability of
methods from several areas of machine learning. Some prop-
erties of these problems which should be familiar to ma-
chine learning researchers include high-dimensional obser-
vations with complicated joint dependencies (probe inten-
sities), partially labeled data sets (expression levels, geno-
types), data from disparate domains (microarray assays,
probe sequences, phylogenetic information), and sequential
observations (ongoing experimental work at individual labs).
We pointed out the suitability of semi-supervised, heteroge-
neous, and incremental learning in these settings. It is worth
remarking that analogous problems arise with other high-
throughput technologies, such as cDNA and long oligonu-
cleotide microarrays, mass spectrometry, and fluorescence-
activated cell sorting.

There are other issues in low-level analysis we did not cover.
Here we mention two of these. Image analysis is the problem
of going from raw pixel values in the scanned image of a
microarray to a set of pixel intensities for each feature placed
on the probe, and then to single-number probe intensities.
The surface of the GeneChip contains detectable grid points
which facilitate rotation and translation of the image to a
canonical alignment; subsequent mapping of each pixel to a

feature is semi- or fully automated and has not previously
raised major analysis issues. However, work is being done
on aggressive reduction of feature sizes to a scale where this
mapping procedure could become a central concern.

On the more theoretical side, probe models based on the
physics of polymer hybridization have recently been the fo-
cus of considerable interest. These models reflect a signifi-
cant increase in the use of biological knowledge for estimat-
ing target abundance and present an opportunity for ap-
plication of machine learning techniques which can exploit
parametric distributions in high-dimensional data analysis,
such as graphical models.

We close by observing that a fuller awareness of low-level
microarray analysis issues will also benefit machine learning
researchers involved with high-level problems: the inevitable
information reduction from earlier stage to later could well
conceal too much of what the unfiltered array data reveal
about the biological issue at hand. Familiarity with initial
normalization and analysis methods will allow the high-level
analyst to account for such a possibility when drawing sci-
entific conclusions.
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