
E-Storm: Replication-based State Management in
Distributed Stream Processing Systems

Xunyun Liu, Aaron Harwood, Shanika Karunasekera, Benjamin Rubinstein and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Lab

School of Computing and Information Systems
The University of Melbourne, Australia

Email: xunyunl@student.unimelb.edu.au, {aharwood, karus, brubinstein, rbuyya}@unimelb.edu.au

Abstract—Apache Storm is a fault-tolerant, distributed in-
memory computation system for processing large volumes of
high-velocity data in real-time. As an integral part of the fault-
tolerance mechanism, Storm’s state management is achieved by
a checkpointing framework, which commits states regularly and
recovers lost states from the latest checkpoint. However, this
method involves a remote data store for state preservation and
access, resulting in significant overheads to the performance of
error-free execution.

In this paper, we propose E-Storm, a replication-based state
management system that actively maintains multiple state back-
ups on different worker nodes. We build a prototype on top of
Storm by extending it with monitoring and recovery modules to
support inter-task state transfer whenever needed. The experi-
ments carried out on synthetic and real-world streaming applica-
tions confirm that E-Storm outperforms the existing checkpoint-
ing method in terms of the resulting application performance,
obtaining as much as 9.44 times throughput improvement while
reducing the application latency down to 9.8%.

I. INTRODUCTION

Stream processing systems ingest data continuously and
concurrently in memory, performing computations on a record-
by-record basis. Apache Storm, for example, is a distributed
Data Stream Management System (DSMS) designed to pro-
cess unbounded streams of data in real-time. As a middle-
ware bridging the gap between applications and resources, it
provides improved programmability to developers through the
abstraction of processing primitives and the simplification of
stream routing models. It also enables horizontal scalability
on distributed infrastructure, allowing for the adjustment of
computation scale at runtime without exposing low-level im-
plementation details to developers. Besides, Storm greatly en-
hances the system manageability for operations staff: runtime
controllability is achieved through an interactive interface,
while the reliability and fault-tolerance issues faced by the up-
level applications are automatically handled by Storm itself.
These remarkable features make Storm an ideal host for
running continuous streaming logic, and many consider it as
the counterpart of Hadoop in the real-time computation field.

There are three fault-tolerance mechanisms built in Storm
that enable reliable stream processing, namely: (1) Supervised
and stateless daemon execution, which allows the failed Storm
daemons to be restarted, resuming their stateless execution
under the supervision of an external process monitoring tool;
(2) Message delivery guarantee, which ensures the consistency

of processing semantics by using a subtle anchoring and
acknowledgement algorithm; and (3) State persistence, which
persists the current computation states to somewhere in order
to mask the loss of states caused by JVM or node crashes.
This paper proposes a novel state management framework to
better achieve this goal.

Since version 1.0.0, Storm’s core has abstractions for stream
operators to save and retrieve states against a persistent
state store. However, the current state persistence technique
introduces significant overhead to error-free execution. From
the implementation’s perspective, state persistence is now
achieved through checkpointing, where a remote data store is
constantly involved in all state accesses. Specifically, there is
an internal data source that initializes a checkpoint transaction
by sending signals across the streaming application. Upon
receiving the checkpoint signal, stateful operators prepare
and preserve their intermediate states to a Redis1 store, and
then empty the in-memory cache to commit the transaction.
The frequency of checkpointing is defaulted to every second,
which brings significant state synchronization overhead; while
setting the checkpoint interval too large would risk losing
state between checkpointing and being unable to replay failed
messages. Secondly, the use of any committed state resorts to
the remote data store, which imposes non-trivial data access
delay for latency-sensitive streaming applications. Lastly, there
could be a massive amount of operators accessing the remote
data store simultaneously for state retrieval or check-pointing,
which makes the store a potential performance bottleneck to
application throughput.

In this paper, we propose E-Storm, a light-weight,
replication-based state management framework in Storm that
eliminates the use of remote data store during error-free
execution. To ensure state persistence in the case of failures,
our framework automatically maintains live state replicas on
different nodes of Storm and transfers state when needed. The
number of replicas can be customized with regard to the user’s
needs, but in general a stateful operator with k replicas is able
to tolerate the failure of any k − 1 worker nodes.

The main contributions of this work are as follows:
• We propose a replication-based state management frame-

work for achieving state persistence in the case of fail-

1https://redis.io/

https://redis.io/


ures, which exposes a concise fluent-style interface and
works transparently to the upper-level logic.

• We design a failure recovery protocol that guarantees
application integrity when failover occurs. The recovery
operates at the lowest thread level and is seamlessly
integrated to Storm’s execution flow. The replication of
state is also autonomous and high-performance, which
allows multiple transfers to occur concurrently.

• We implement the framework and conduct extensive ex-
periments to demonstrate the superiority of our approach
compared to the existing check-pointing method, which
reaches as much as 9.44 times throughput boosts and
90.2% latency reduction.

Our implementation of E-Storm is loosely coupled with the
existing Storm modules, and it is also externally configurable
to provide different levels of state resilience in different use
cases. The remainder of the paper is organized as follows: We
give background information on Apache Storm in Section II,
before providing an overview of our framework in Section III.
We then describe the error-free execution model and the failure
recovery mechanism in Section IV and V, respectively. The
performance evaluation is presented in Section VI. Finally, we
summarize related works and conclude the paper in Section
VII and VIII.

II. BACKGROUND

In recent years, Apache Storm emerged as a new generation
of data stream management system for tackling many real-
time use cases such as on-line machine learning, continuous
computation and Distributed Remote Procedure Call (DRPC).
The scalable, fault-tolerant, and language-agnostic design of
Storm offers seamless integration with the mainstream queue-
ing and database technologies, making it much easier to
process unbounded fast data on a set of distributed resources.

From the structure point of view, a Storm cluster much
resembles Hadoop — its counterpart in batch processing. It
also includes a master node and several worker nodes: the
master node has a nimbus daemon that is responsible for
monitoring the cluster and distributing workload; while the
worker node hosts the worker processes to carry out the
streaming logic in JVMs. Additionally, there is a supervisor
daemon that communicates with the nimbus and constantly
governs the worker processes during runtime. The whole
Storm cluster relies on Zookeeper — a distributed hierarchical
key-value store to coordinate and failover.

In Storm’s terminology, a tuple is an ordered list of key-
value pairs (each pair is referred to as a field) and a stream is an
unbounded sequence of tuples. From the logical perspective,
the workflow of a streaming application is represented by the
topology — a Directed Acyclic Graph (DAG) of operators
standing on streams. Among operators, the sources of streams
are called spouts that pull stream data to the topology, while
the others are referred to as bolts that can either generate
new streams based on inputs or simply consume data without
emission. Different bolts may contain various user-defined
processing logics such as functions, filtering, and aggregations.

From the viewpoint of execution, an operator is distributed
across the Storm cluster as one or more tasks, the process
of which is called operator parallelization. Each task is
an operator instance that handles a portion of the operator
input with the same streaming logic, so Storm makes full
use of distributed resources by distributing tasks to different
worker nodes. Also, as a consequence of parallelization, each
incoming stream is accompanied by a grouping policy that
determines how tuples are routed among the receipt tasks.
When a streaming application is submitted to the cluster,
the worker process will spawn executors — the minimal
schedulable entity of Storm — to wrap the execution of tasks.
Note that each executor is a thread that may run one or
more tasks for the same component (spout or bolt), Therefore,
internally tasks have to run in sequence.

Most of the streaming applications involve stateful operators
that accumulate states such as window statistics or aggregation
results during runtime. Therefore, it is crucial to ensure the
integrity of operator states in the case of failures. From the
execution point of view, the parallel execution of stateful
operator requires each task to maintain a unique partition of
the internal state. All the internal states are temporally stored
in memory and are thus subject to JVM failure. Currently,
the only way to achieve state persistence is through regularly
checkpointing them to a remote Redis store. Storm has a
built-in checkpoint mechanism which implements a three-
phase commit protocol on top of the existing message delivery
system, ensuring that the states of different tasks would be
saved in a consistent and atomic manner. However, as we
have explained in Section I, such implementation introduces
non-trivial overhead to the error-free execution of streaming
applications.

III. FRAMEWORK OVERVIEW

In order to maintain multiple state backups independently,
our state management framework duplicates the execution of
stateful tasks on different worker nodes. Fig. 1 uses an example
application to illustrate the changes we have made to the Storm
execution model. There are three linearly connected operators
in the example application: OpA is the spout, OpB is a stateful
operator, and OpC is a stateless operator. Both OpB and OpC
are parallelized into two tasks for distributed execution:

1) Having set the number of replicas for OpB to 2, the
framework spawns two shadow tasks TB′

1
and TB′

2
to

mirror the execution of the primary task TB1 and TB2 ,
respectively. Tasks sharing the same state make up a task
fleet, which are exclusively placed on different worker
nodes for independent execution.

2) Any input stream sent to the primary task is copied to
its shadow counterparts. However, shadow tasks have no
output stream as they only serve as state containers.

3) In the case of failures, the restarted tasks recover their
lost states from the alive partners of the same fleet.

We have extended Storm with several modules to implement
these changes. These include the Topology Adapter, the State



B1

B2

A1
C2

C11
2

A1

B1

B2

C1

C2

B'1

B2

A1
C2

C1
1

2

A1

B1

B2

C1

C2

B'2

B1

1

2

B'2 B'1

A B C

With 
Replication

Topology View

Task View

Worker View

Task View

Worker View

Fig. 1. The execution of an example streaming application on Storm, with
or without state replication.

Worker Node

Worker Node

Nimbus

Supervisor

Supervisor

Worker Process

Worker Process
Executor
Task Wrapper

Task

Task Wrapper
Task

Zookeeper 

State Transit 
Station

Topology 
Adapter

Recovery Manager

Worker Process

Streaming Application

State 
Monitor

State 
Monitor

Transferring states through 
State Transit Station

Fig. 2. The extended Storm architecture with the state management frame-
work, where the newly introduced modules are highlighted in grey.

Monitor, the Task Wrapper, the Recovery Manager and the
State Transit Station, which are highlighted in grey in Fig. 2.

The Topology Adapter is written in Storm core to help
alleviate the adaptation effort on the application level. De-
velopers can define the number of replicas using a fluent-style
replication API, just like how they specify the number of tasks
for operators. The adapter is also in charge of re-grouping
streams for stateful operators and initializing other modules
for state management. When the application is submitted
to Nimbus, this module ensures that the shadow tasks are
transparently set up across the Storm cluster.

The State Monitor, located alongside the supervisor dae-
mon, is responsible for monitoring the health of states residing
in this worker node. Once a state issue is detected, it will
send a recovery request to the Recovery Manager through
Zookeeper. The State Monitor itself is stateless and fail-fast,
with execution placed under constant supervision.

The Recovery Manager is an internal operator that initial-
izes, oversees and finalises the recovery process. It implements
the Zookeeper watcher interface to monitor recovery requests,
then exploiting the Storm’s acknowledgement system to ensure
the consistency of recovery. Being a stateless operator, its
fault-tolerance is guaranteed by Storm to survive from node
and JVM crashes.

Am
1 A1

2 A2
2A1

1 A2
1 A1

n Am
n …… … …

A1 AnA2  …… 

AOperator

Tasks without 
Replication

Tasks with m 
Replications

Task ID 0 1 m‐1 m m+1 (n‐1)m nm‐1

Fig. 3. The role of a task is decided based on the index of its task ID. The
primary tasks are coloured in grey.

The Task Wrapper encapsulates the task execution with the
logic to handle state transfer and recovery. There is also the
State Transit Station that decouples the senders and receivers
during the state transferring process. By directing all the
state transfers to the station, task wrappers perform state
management without synchronization and leader selection,
which would have been necessary in a peer-to-peer style
recovery and introduce non-negligible overhead.

The state management framework has two different working
modes, namely error-free execution and failure recovery. In the
following sections, we discuss in detail how these extended
modules are implemented to achieve state persistence against
JVM and node crashes.

IV. ERROR-FREE EXECUTION

When a streaming application is submitted, the topology
adapter is responsible for deciding the task roles in execution
(primary or shadow). It is also in charge of rewiring the
task communication for message replication and placing the
tasks of the same fleet on different machines for failure-
independence.

The role of a task is statically decided based on its task ID
— the primary task is the one with the lowest ID in a fleet.
As shown in Fig. 3, OpA is a stateful operator that is initially
parallelized as n tasks. After users set the number of replicas
to m, the topology adapter transparently multiplies the number
of tasks to n times m and composes each m tasks as a task
fleet. Therefore, TA1

1
, TA1

2
...TA1

n
are set as primary tasks and

each one of them is accompanied by m− 1 shadow tasks that
are adjacent in ID. Note that the role of these tasks will not
change throughout the application lifecycle.

In order to replicate states across the task fleet, the contained
tasks must receive the same inputs for processing. To this
end, the topology adapter replaces the original grouping that
connected to the stateful bolt with a custom, replication-
aware stream grouping method, which replicates the tuples
in transmission transparently at the message channel.

Take the fields grouping — the most common grouping
type in stateful computation — as an example. It routes a
particular tuple Tuple to its target task Ttarget according to
the following equation: Ttarget = hash(Tuple.fields)%n,
where n is the number of tasks and hash is a concatenating
function on the hash codes of the selected grouping fields.
When the fields grouping is replaced with the replication-
aware fields grouping, the message channel computes a list of



Algorithm 1: The replication-aware task placement algo-
rithm

Input: A Storm cluster with nm nodes and a topology Γ
Input: A task set ~τ = {τ1, τ2, . . . , τn} to be assigned
Output: A node set ~m = {m1,m2, . . . ,mnm} with each

node hosting a disjoint subset of ~τ
1 Ami

← d n
nm
e (i = 1, 2, ...nm)

2 Qop ← BFSTraversal(Γ, spout)
3 ~τordered ← ∅
4 while ~τordered does not contain all the tasks in ~τ do
5 foreach Operator op ∈ Qop do
6 if op has an unvisited shadow task τi then
7 ~τordered.append(τi)
8 op.remove(τi)

9 foreach Task τi ∈ ~τordered do
10 foreach node mj ∈ ~m that has Amj > 0 do
11 if mj has no conflicting tasks to τi then
12 Imj

← the increase of the intra-node
communication pairs if τi were put onto mj

13 Place τi to node mj with the largested Imj

14 Amj ← Amj − 1

15 return ~m

m target tasks rather than a single one, which is formulated as
Ttargets = {hash(Tuple.fields)%n∗m+i|(i = 0, ..,m−1)}.

A. Replication-aware Task Placement

Essentially, the task placement problem is a bin-packing
variant that takes tasks as items and worker nodes as bins,
while the optimization target is to reduce the number of inter-
node communication pairs for improving application perfor-
mance. Besides, our problem has a hard constraint that tasks
from the same fleet are not to be put on the same worker node.

The task placement problem itself is NP-Hard since it can
be reduced from the PARTITION problem [1]. However, it
is feasible to find a sub-optimal solution by using efficient
heuristic methods. We therefore propose a replication-aware
task placement algorithm based on the greedy heuristic, with
the following desirable features in its design:

• It is only responsible for placing shadow tasks to worker
nodes; while the placement of other tasks are left for the
user-given task scheduling algorithm to decide. Such a
design allows for the use of various existing scheduling
algorithms that optimize towards different targets, such
as throughput, latency, resource-awareness, etc.

• The shadow tasks are spread as far as possible across the
cluster, so the overhead of replication is balanced and
the effort of state recovery is minimized in the case of
failures.

• The algorithm makes use of the topology structure to
place communicating tasks as close as possible.

Fig. 4. The flowchart of the recovery process, which is seamlessly integrated
with the Storm’s error-handling logic and leverages the acknowledgement
system to pause and resume the execution flow.

Algorithm 1 depicts the pseudo-code for the replication-
aware task placement. It first calculates Ami

, the capacity
of each node, by enforcing the shadow tasks to spread out
across the cluster. Then the standard Breadth-first traversal
procedure is applied to the topology structure, yielding an
operator queue Qop which is a partial ordering of operators
with the communicating pairs placed in succession.

Lines 3-8 of the algorithm describe the procedure to gen-
erate an ordered list of tasks ~τordered based on Qop. For each
operator being traversed, the algorithm takes out one shadow
task at a time and appends it to the ordering list. This process
continues until all the tasks to be placed are ordered, which
ensures that, in the later placement phase, the communicating
tasks have better chance to be placed in close vicinity.

The rest of the algorithm determines the exact node where
a particular task would be placed. As shown in line 13, the
greedy heuristic chooses the one that is capable of turning
more communications into intra-node message passing. If
there is a tie between multiple alternatives, the one with the
highest remaining capacity will be selected.

V. FAILURE RECOVERY

The recovery phase is triggered when any worker crashes
during runtime. Fig. 4 briefly illustrates the work flow of
recovery after the failure occurs.

In general, Storm automatically pauses the application ex-
ecution due to the lack of tuple acknowledgement. Through
the heartbeat mechanism between worker processes and Storm
daemons, the failed tasks will be transparently restarted with



Algorithm 2: The state operation logic encapsulated in the
StateManipulator

Input: A recovery transaction tx with ID tx.id and the
set of tasks that have lost their state tx.set

Input: An initilization flag isInit that indicates if s, the
state of the wrapped task, has been initilized

Input: A CuratorFramework client cf that opeartes on
the Zookeeper

Input: The task fleet tf that the wrapped task belongs to
1 if isInit == True then
2 cf initilizes a shared inter-process lock on tf
3 if cf .acqureLock(tf ) and s ∈ tx.set then
4 if s is not on the State Transition Station then
5 Save s to the State Transition Station

6 cf .releaseLock(tf )

7 else
8 while s is not on the State Transition Station do
9 Sleep a while, recheck until recovery times out

10 if s exist in the State Transition Station then
11 Read s from the State Transition Station and

assign it to the wrapped task
12 Process the pending tuples that received before s

is initilized
13 isInit = True

14 else
15 Return with a recovery failure flag

16 Emit the recovery transaction tx to downstream
17 Acknowledge the recovery transaction tx
18 return

the same task ID, but possibly placed on different worker
nodes depending on the type of failure. Therefore, it is required
that the replication-aware task placement is invoked to avoid
two tasks from the same fleet being collocated. During the
preparation process, these restarted tasks report the loss of
state to the state monitor, which initializes a recovery transac-
tion on a dedicated Zookeeper node, recording a transaction
ID as well as the set of tasks being affected. The recovery
manager that constantly monitors the Zookeeper would make
sure that all the affected tasks get initialized with its previous
states through the failure recovery process.

The recovery manager is implemented as an internal spout,
which is automatically added by the topology adapter if there
is at least one stateful bolt and the state replication is turned
on. The adapter also connects the recovery manager with
other operators through a separate internal stream, allowing
it to send recovery signal across the topology for starting and
supervising the failure recovery process. Once the recovery
manager receives acknowledgement from all the downstream
operators, the state recovery is complete and the streaming
application can resume execution from the point it left off.

As mentioned in Section III, the task wrapper encapsulates

the state transfer and recovery logic, making the state manage-
ment mechanism autonomous and transparent to its wrapped
task. There are two different types of wrappers in our frame-
work, encompassing stateless and stateful tasks, respectively.
The wrapper for stateless tasks is called SignalForwarder,
whose only duty is to forward the signal tuple to all its
downstream tasks; while the StateManipulator for stateful
tasks not only handles the state management on receiving the
recovery transaction, but also relays the received signal for it
to be broadcast across the topology DAG.

Specifically, Algorithm 2 illustrates the pseudo-code of state
operations in the StateManipulator. Lines 1-6 of the algorithm
are executed by the statful tasks that are not affected by the
failure. Considering that there could be multiple tasks alive in
the same fleet and they all attempt to preserve states without
prior-synchronization, our algorithm takes advantage of the
inter-process lock on Zookeeper, ensuring that there is only
one task in each crash-affected fleet communicating to the
state transmit station, which greatly reduces the network flow
during the state transfer process.

Lines 7-15 of the algorithm describe the state recovery
logic for restarted tasks. Once the recovery signal is received,
tasks that are initialized from scratch start querying the state
transmit station for accessing their lost state. However, the
corresponding state preservation process may not be complete
by the time they restarted, so these tasks need to repeat the
retrieval attempts until the recovery times out. Besides, any
tuple that is received before the state initialization is added to
a pending list to delay its execution.

Due to the limitation of the acknowledgement system in
Storm’s core, our failure recovery logic cannot eliminate
duplicate tuple evaluation. However, it is possible to achieve
exactly-once semantics with the Trident abstraction, where the
idea of replication still applies for state persistence.

VI. PERFORMANCE EVALUATION

In this section, we explore in detail the performance of our
prototype (E-Storm) compared to the existing checkpointing
method, by applying them to both synthetic and real-world
streaming applications. The design of evaluation answers the
following questions:

• What are the runtime overheads for enabling state persis-
tence and how do these overheads vary in different use
cases? (Section VI-B)

• How does the resilience level, i.e. the number of state
replications, affect the performance of E-Storm? (Sec-
tion VI-B)

• How long does it take for E-Storm to recover a streaming
application from JVM crashes. (Section VI-C)

A. Experiment Setup

Our experiments are conducted on Storm v1.0.2 using the
Nectar IaaS Cloud2. The Storm cluster consists of 10 worker
nodes and 2 administrative nodes for Nimbus and Zookeeper,

2https://nectar.org.au/research-cloud/

https://nectar.org.au/research-cloud/


(a) The topology of the synthetic test application

(b) The topology of the real-world test application

Fig. 5. The illustration of the test application topologies. In Fig. 5a, Stateful
Bolt 1 and State Bolt 2 have the same implementation.

respectively. Apart from that, there is also (1) a Kestrel3

node that caches inputs for streaming applications when the
processing capability of the cluster cannot catch up with the
speed of data generation; and (2) a Redis node that works
as the remote data store in the checkpointing method and the
state transmit station in E-Storm. The above-mentioned nodes
are all of “m2.medium” size, provisioned from the same NCI
availability zone and equipped with 2 VCPUs, 6GB RAM and
30GB root disk.

1) Test Applications: Our first test application is syntheti-
cally designed to mimic different intensities of state usages. As
shown in Fig. 5a, it consists of four operators (Op1, ..., Op4):
Op1 is the KestrelSpout that pulls input data from the Kestrel
queue server, while Op2 and Op4 are two stateful operators
that are connected through the stateless operator Op3. Table I
illustrates the application configurations that adjust the size of
internal states and the way of accessing them.

TABLE I
THE CONFIGURATION OF THE SYNTHETIC TEST APPLICATION

Symbol Configuration Description

Ns The number of stateful tasks in this topology
Es The size of states being kept in each stateful task
Fs The number of state access in the execute method

In particular, Ns denotes the number of stateful tasks in
total, where Op2 and Op4 equally get Ns/2 tasks for parallel
execution; whereas the parallelism degree of Op3 is fixed at
10, as it is sufficiently large to ensure the stateless operator
will not be the bottleneck of the topology. In terms of the
streaming logic, each stateful task maintains a key-value map
and continuously fills it with the recently received data. We
externally cap the maximum number of map entries at Es,
which essentially determines the size of the internal state to
be kept in this particular task. Lastly, Fs denotes the number
of state access operations encapsulated in the execute method,
which effectively determines the frequency of state access for
processing a single tuple.

The second application is drawn from a real-world use
case — extracting short Uniform Resource Locators (URLs)
from incoming tweets and replacing them with complete URL

3https://github.com/twitter-archive/kestrel

Topology

Apache Storm Cluster

Message 
Queue

Message 
Generator

Metric 
Reporter

Data Stream Flow

Metric Flow
     VMs

Performance Monitor

Op Op Op Op

Fig. 6. The profiling environment set for the performance evaluation.
Solid connectors represent the generated data stream flow, while the dashed
connectors denote the flow of performance metrics.

addresses. As depicted in Fig. 5b, the whole application
also consists of 4 operators: the KestrelSpout as used in the
synthetic application, the JsonParser bolt that parsers the tweet
string and extracts the main body from the JSON content, the
SentenceSplitter that isolates and filters short URLs, and the
Converter that actually performs the conversion. Among them,
the Converter is a stateful operator caching the map of short
and complete URLs in its memory, so trending pages can be
identified from the map statistics and it does not need to check
the remote database whenever an input tuple is received. As
for configuration, this application has only one parameter to be
set, i.e. the number of tasks that are evenly distributed among
all these four operators.

2) Evaluation Methodology: We examine the application
performance in two major metrics, namely throughput and
complete latency. The application throughput is obtained exter-
nally by observing the number of acknowledgements per unit
of time, while the complete latency is a built-in Storm metric,
which calculates the average time taken by a tuple and all its
offspring to be completely processed by the topology.

In order to evaluate the performance overhead brought by
different approaches of state persistence, we have set up a
profiling environment that feeds the streaming application
with sufficient inputs and continuously monitors the resulting
performance. The components of the profiling environment
are briefly depicted in Fig. 6. The Message Generator is
a Java program that reads the workload file on-demand to
emit a particular size of profiling stream, and the workload
file contains 899,560 tweets in JSON format that collected
from 24/03/2014 to 14/04/2014. Running on the kestrel node,
the Message Queue module is built with Twitter Kestrel,
which exposes a Thrift interface for the message generator to
retrieve the length of the message queue and further determine
whether the streaming application has been overwhelmed by
the profiling data. The application metrics, such as through-
put and latency, are externally collected by the performance
monitor which is implemented as a RESTful client. With
ample profiling inputs, the Storm cluster will be pushed to its
performance limit, i.e. exhibiting the highest throughput, after
the application is stabilized. For all the test applications, we
also set the Storm configuration MaxSpoutPending to 10000,
which is the maximum number of unacknowledged tuples that
can be pending on a spout task at any given time. Therefore,

https://github.com/twitter-archive/kestrel


such environment setting makes it possible to compare the
performance across different test applications.

B. Performance of Error-free Execution

1) Overhead of State Persistence: In this section, we first
examine the performance overhead brought by state persis-
tence, as well as how it varies under different application
behaviours when the configurations of state have been altered.
Table III describes the evaluated and default values for each
application parameter. When a particular parameter is being
examined, the others were set to their default values.

TABLE II
EVALUATED PARAMETERS AND THEIR VALUES (DEFAULT VALUES ARE

SHOWED IN BOLD).

Parameters Values

Ns (synthetic application) 10, 20, 30, 40, 50
Es (synthetic application) 210, 212, 214, 216, 218
Fs (synthetic application) 4, 6, 8, 10, 12
Number of tasks (real application) 8, 16, 24, 32, 40
Number of state replications 2, 4, 6, 8, 10

As shown in Fig. 7 and Fig. 8, the results obtained from the
synthetic application clearly demonstrate that enabling check-
point for state persistence leads to significant performance
degradation. Under the default configuration, checkpointing
yields 18.3% throughput and 5.38 times complete latency,
compared to the baseline case with no state management. As
a matter of fact, the acknowledgement of processed tuples
have to be delayed until the internal state has been committed
to the remote data store, therefore, it is not possible for the
checkpointing method to reduce the complete latency below
the pre-designated checkpoint interval, which is default to 1
second for performance consideration.

Furthermore, by altering the application configuration, we
can identify and measure the factors that contribute to the
checkpointing overhead, namely periodic synchronization and
state access. When the size of state is increased from 210 to
218, the application throughput drops to about 49.9% while
the complete latency soars to 196.7%, indicating that larger
state involves more state updates and thus imposing significant
overhead for the remote data store to synchronize. However,
this overhead does not increase linearly along with the size of
state as the checkpointing method actually adopts the strategy
of incremental update for synchronization.

However, such update strategy also brings non-negligible
network delay for state access. After Fs varies from 4 to 12,
the checkpointing method suffered from 59% throughput loss
and 233.7% latency increase, and the performance degradation
almost changes linearly in regard to the variation of Fs.

The replication-based state persistence, by contrast, shows
promising performance against checkpointing. To start with,
the replication method exhibited steady throughput and latency
when varying Es and Fs, i.e. the size of state and the frequency
of state access. In the worst case, it accounts for 74.9% of
throughput and introduces only 11.5% of latency compared to

the non-persistent baseline. The rationale behind these results
is that our approach manages the internal states in memory
resembling the way how baseline works, and the performance
is unlikely to be bottlenecked by the memory access speed.

However, as expected, it has been identified that the over-
head of state replication climbs as the number of stateful
tasks increases. To put it quantitatively, after adjusting Ns

from 10 to 50, the throughput of replication reduces from
73.3% to 55% and the complete latency rises from 108.4%
to 123.2%, with all figures obtained from the comparison to
the baseline in which no state persistence is provided. Our
analysis deems such performance degradation as a result of
bandwidth contention. As there are more shadow tasks to be
spawned at different nodes and their inputs to be replicated
at the message channel, our approach causes additional band-
width consumption and impairs the maximum performance.
However, this overhead does not increase super-linearly with
the number of stateful tasks, so we argue that the proposed
method is still applicable to production-scale applications for
state persistence.

2) Overhead of Maintaining More Replicas: To inves-
tigate how the number of replicas affects the application
performance, we deployed the two test applications to the
testbed: the synthetic application uses its default configuration,
while the real application sets the number of tasks to 24 for
better demonstration. The evaluation results are illustrated in
Fig. 9. For the synthetic application whose performance is
bounded by the inter-node bandwidth, the resulting throughput
dramatically decreases to roughly 26.4% of the highest point
as the number of replicas increases to 10, while the complete
latency experiences a slight increase from 219 ms to 294 ms
during this variation. On the other hand, introducing more state
replicas to the real application has not produced noticeable
performance degradation, which can be explained by the fact
that the whole application is actually bounded by the lack of
tasks to process the incoming stream in parallel, rather than
the duplication of messages at the communication channel.
We also observed that tasks of the real application spend most
of their time executing tuples, contrasting to the tasks of the
synthetic topology having a relative small capacity with more
time spent on waiting I/O operation to complete. Through
this experiment, we reach the conclusion that our method is
better suited for applications with mild or medium bandwidth
consumptions. If an operator is known to be bandwidth bound,
E-Storm has the ability to individually set the number of
replicas for this operator to a relatively small value, in order
to avoid significant performance penalty.

C. Performance of Recovery

To inject failures and invoke the recovery process, we send
SIGKILL signals to the designated worker processes, forcing
them to terminate without proper clean-up. The real-world
application (url-mapping) is selected as the test application,
with number of tasks set to 40 and each stateful task having
one replica running on another worker node. The application



10 20 30 40 50

0.2

0.6

1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

4.6

5

5.4

5.8

T
hr

ou
gh

pu
t (

T
up

le
s 

pe
r 

se
co

nd
)

#104

Without State Persistence
Replication
Checkpointing

(a) Varying Ns (Sythetic App)
210 212 214 216 218

0.2

0.6

1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

4.6

5

5.4

5.8

T
hr

ou
gh

pu
t (

T
up

le
s 

pe
r 

se
co

nd
)

#104
Without State Persistence
Replication
Checkpointing

(b) Varying Es (Sythetic App)
4 6 8 10 12

0.2

0.6

1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

4.6

5

5.4

5.8

T
hr

ou
gh

pu
t (

T
up

le
s 

pe
r 

se
co

nd
)

#104
Without State Persistence
Replication
Checkpointing

(c) Varying Fs (Sythetic App)
8 16 24 32 40

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000

T
hr

ou
gh

pu
t (

T
up

le
s 

pe
r 

se
co

nd
)

Without State Persistence
Replication
Checkpointing

(d) Varying number of tasks (Real App)

Fig. 7. The application throughput under different state persistence methods. Each result bar is an average of 10 consecutive throughput readings collected
every 60 seconds, with the standard deviation plotted in the error bar.

10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

C
om

pl
et

e 
La

te
nc

y 
(m

ill
is

ec
on

ds
)

Without State Persistence
Replication
Checkpointing

(a) Varying Ns (Sythetic App)
210 212 214 216 218

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

C
om

pl
et

e 
La

te
nc

y 
(m

ill
is

ec
on

ds
)

Without State Persistence
Replication
Checkpointing

(b) Varying Es (Sythetic App)
4 6 8 10 12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

C
om

pl
et

e 
La

te
nc

y 
(m

ill
is

ec
on

ds
)

Without State Persistence
Replication
Checkpointing

(c) Varying Fs (Sythetic App)
8 16 24 32 40

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

C
om

pl
et

e 
La

te
nc

y 
(m

ill
is

ec
on

ds
)

Without State Persistence
Replication
Checkpointing

(d) Varying number of tasks (Real App)

Fig. 8. The application latency under different state persistence methods. Each result is an average of statistics collected in a time window of 10 minutes,
and the error bar is omitted as the standard deviation of latency is negligible for stabilized applications

2 4 6 8 10

0.2

0.6

1

1.4

1.8

2.2

2.6

3

3.4

3.8

T
hr

ou
gh

pu
t (

T
up

le
s 

pe
r 

se
co

nd
)

#104

Synthetic Application
Real Application

(a) Throughput changes
2 4 6 8 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

C
om

pl
et

e 
La

te
nc

y 
(m

ill
is

ec
on

ds
)

Synthetic Application
Real Application

(b) Latency changes

Fig. 9. The application performance under different resilience levels, i.e.
number of replicas for stateful tasks. The throughput and latency notations
have the same meaning as explained in Fig. 7 and Fig. 8.

outputs and metrics are collected throughout the test to validate
the efficacy and efficiency of E-Storm.

1) Recovery from a Single Error: In the first experiment,
a JVM crash was injected to the test application on the
10th minute, causing two stateful tasks to lose their states.
Fig. 10a depicts the application throughput obtained through
the Storm’s RESTFul API. Note that they are calculated as an
average statistics of a short time period (10 seconds), as the
instantaneous throughput can better reflect the consequence
of failure on the application performance. The results demon-
strated that the application was paused for 30 seconds, and

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time elapsed (minutes)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

T
hr

ou
gh

pu
t (

T
up

le
s 

pe
r 

se
co

nd
)

(a) Monitored application throughput

2 4 6 8 10

Number of stateful tasks being affected by the failure

0

50

100

150

200

250

300

S
iz

e 
of

 s
ta

te
s 

tr
an

sf
er

re
d 

(M
B

)

(b) Size of transferred states

Fig. 10. The recovery test performed on the real-world streaming application.

then gradually increased its throughputs for 60 seconds until
stabilization. The recovery time includes: (1) the time used for
the supervisor daemon to restart the failed worker process (5.6
s); (2) the time taken for the failed tasks to be prepared (1.8 s);
(3) the time taken by the alive tasks to write to Redis (6.2 s)
and (4) the time taken by the restarted tasks to retrieve their
states from Redis (7.9 s). This break-down data is obtained
from the analysis of the Storm log file and the status of Redis
server. However, it is also worth mentioning that by default,
the Kestrel Spout waits for 30 seconds before replaying the
failed tuples, so the application did not produce throughputs
immediately after completing the recovery process.



2) Recovery from Multiple Errors: The second experiment
is to evaluate the performance of recovery triggered by multi-
ple errors. We injected multiple SIGKILL signals to the target
worker processes at the same time, with care taken not to
bring down all the states backups for a stateful task. As shown
in Fig. 10b, the size of states being cached in Redis almost
rises proportionally along with the number of tasks being
affected. This result can be explained by two factors: firstly,
each stateful tasks maintains roughly the same size of states as
the hash-code based streaming grouping balances the load well
among them; secondly, only one alive task in each affected
task fleet got to preserve its state to Redis, while the others
were staying idle during the whole recovery process.

TABLE III
THE COMPARISON OF RECOVERY TIME UNDER MULTIPLE ERRORS (UNIT:

SECONDS)

No. of stateful tasks affected Wr Tp Ws Rs Total

2 5.6 1.8 6.2 7.9 90
4 5.6 1.9 11.2 13.2 120
6 5.6 2 16.7 18.9 120
8 5.6 1.9 20.2 22.5 120
10 5.7 2.1 25.8 28.7 140

In Table III, we also compare the recovery time needed for
the application to resume execution under multiple errors. In
this table, Wr is the time used for the failed worker processes
to be restarted; Tp is the time for restated tasks to be prepared;
Ws is the time used for writing states to Redis and Rs is the
time for loading states to the restated tasks. Note that each
failed node executes the recovery protocol asynchronously
without synchronization, so they may take different times to
complete each recovery stage. Therefore, we report the results
by averaging the readings collected on the failed nodes, except
the Total column which is the time taken for the topology to
restore its normal performance (reaching 90% of the average
throughput observed before failure).

The comparison results indicate that the recovery time for
Storm daemons are independent from the scale of failures, but
the time used for writing and reading states increases along
with the state sizes, which are shown in Fig. 10b. However,
we can reasonably envision that the use of multiple Redis
instances can reduce these time, as different task fleets are
mapped to their corresponding Redis instance for concurrent
state transfer.

VII. RELATED WORK

State management is one of the major research topics in
distributed streaming processing. In this section we review
the approaches that manage the transient operator states with
particular goals in data stream management systems.

Some works manage states for application integrity in the
event of failure or operator scaling. Fernandez et al. proposed
a set of state management primitives to expose operator states
explicitly to the middle-ware system, so that the DSMS is
able to periodically checkpoint them to the upstream VMs

with partitions in order to enable state recovery and scaling
[2]. Similarly, ChronoStream [3] provides elastic support for
stateful operators by dividing the application states into a set of
computation slices, which are checkpointed to specified nodes
exploiting locality-affinity and lineage-free progress tracking
to ensure deterministic semantics. StreamScope is a recent
effort to provide declarative interface for users to express
complex streaming logic, which also offers the snapshots
abstraction that periodically checkpoints the operator states
without user intervention [4]. Also, MillWheel checkpoints
its work in progress at fine granularity so that the states are
persisted against failure and message senders are relieved from
buffering the pending data for a long period [5]. There are even
more works fall into this area [6]–[8]. However, regardless the
level of which the checkpoint is performed or the place where
the checkpoint data is stored, periodic state manipulation still
introduces non-negligible runtime overhead.

Some works, on the other hand, focus on migrating states
for dynamical application scaling. Cardellini et al. realize
dynamic horizontal scaling for stateful operators in Storm by
allowing the states to be migrated between existing and newly
added tasks [9]. Gedik et al. explores the profitability of auto-
parallelization by providing a state management API, a run-
time migration protocol, and compile-time topology optimiza-
tion techniques [10], [11]. Ding et al. further investigate the
trade-off between synchronization overhead and result delay
during state migration, so that the selection of migrated tasks
can be optimized to lower the latency spike [12]. However,
these methods cannot be used to provide state persistence
against failures.

The strategy of replication in stream processing has also
been discussed in the literature. Stormy uses replications for
high availability, so there is no failure recovery mechanism
provided to transfer states between different replicas [13].
For fault-tolerance, Balazinska et al. incorporate a replication-
based approach in the Borealis system [14], which duplicates
the execution of the same query network on multiple worker
nodes [15]. To ensure all replicas processing data in the
same order, they also introduce a data-serializing operator
that sorts the multiple streams as input and produces a single
output stream with deterministic order. By contrast, E-Storm
performs replication at the fine-grained operator level with
the flexibility to adjust the resilience guarantee individually,
and it does not duplicate the execution of stateless operations.
Also, we achieve replica consistency through a lightweight
acknowledgement mechanism, thus avoiding the heavy mes-
saging sorting overhead. To reduce the burden of active
replication, Martin et al. present an approach that first conducts
state partitioning and then distributes state slices across the
participating worker nodes [16]. However, this method only
profits in MapReduce-like event processing systems as the
state partitioning is a side effect of execution during run-
time, whereas in the state-of-the-art data stream systems, this
method would incur significant state transfer cost when the
execution is error-free.

With the similar goal to reduce the replication overhead,



Henize et al. combine active replication with upstream backup,
allowing for the adaptive selection of replication mechanism
for individual operators based on the characteristics of the
current workload [17]. However, the placement of operator
and replicas to hosts is not discussed in the paper. Flux is
an opaque operator implemented in TelegraphCQ [18] that
composes duplicated dataflows to enable online-recovery and
mask load imbalances [19]. Nevertheless, replicating the whole
data flow and adding an Exchange layer [20] between each
Producer-Consumer pair would incur more overhead than
our approach, which requires only replicating the stateful
operations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we designed and implemented E-Storm, a
replication-based state management system that masks the loss
of operator states in the case of JVM and node crashes. By
using E-Storm, the stateful tasks are replicated on different
worker nodes under a replication-aware placement strategy,
and the restarted tasks are able to retrieve their previous states
from the alive partners through an asynchronous recovery pro-
tocol. During the state transfer process, the implementation of
E-Storm takes advantage of Redis to decouple the coordination
of state senders and receivers, and makes use of Zookeeper
to reduce the size of states being transmitted. Therefore, it
achieves concurrent and high performance system recovery in
the presence of failures.

Through a comprehensive performance evaluation, the re-
sults confirm that our approach greatly outperforms the ex-
isting checkpointing method in terms of throughput and la-
tency overhead. Specifically, E-Storm can bring up to 9.44
times throughput improvement while reducing the application
latency down to 9.8% compared to that of the checkpointing
method (witnessed in the synthetic test application when Fs,
the number of state access in the execute method, is set
to 12). We also identified that the overhead of checkpoint-
ing is attributable to the frequent state access and remote
synchronization, which cannot be mitigated by enlarging the
checkpointing internal as it would incur unacceptable latency
penalty for real-time streaming applications.

As for future work, we plan to investigate adaptive replica-
tion schemes with intelligent replica placement strategies. We
also aim to revise the recovery protocol to make it location-
aware so that states are transferred between nodes in vicinity.
In the long term, we would like to explore the possibility
of integrating different fault-tolerance techniques, including
active and passive replicas, to provide a sophisticated state-
persistence solution that caters for both the characteristics of
the streaming application and its workload.

ACKNOWLEDGMENT

This work is supported by Australian Research Council
Future Fellowship and DP150103710.

REFERENCES

[1] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo, Bin
Packing Approximation Algorithms: Survey and Classification. Springer
New York, 2013, pp. 455–531.

[2] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD
international conference on Management of data, ser. SIGMOD ’13.
New York, USA: ACM Press, 2013, pp. 725–736.

[3] Y. Wu and K.-L. Tan, “ChronoStream: Elastic stateful stream compu-
tation in the cloud,” in Proceedings of 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 2015, pp. 723–734.

[4] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou, “StreamScope:
Continuous Reliable Distributed Processing of Big Data Streams,” in
Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation, 2016, pp. 439–453.

[5] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “MillWheel: Fault-
Tolerant Stream Processing at Internet Scale,” in Proceedings of the Very
Large Data Bases, no. 11, 2013, pp. 734–746.

[6] R. C. Fernandez, M. Weidlich, P. Pietzuch, and A. Gal, in Proceedings
of the 8th ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’14.

[7] B. Lohrmann, D. Warneke, and O. Kao, “Nephele streaming: stream
processing under QoS constraints at scale,” Cluster Computing, vol. 17,
no. 1, pp. 61–78, 2014.

[8] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “TimeStream: Reliable Stream Computation in the Cloud,”
in Proceedings of the 8th ACM European Conference on Computer
Systems. ACM Press, apr 2013, pp. 1–14.

[9] V. Cardellini, M. Nardelli, and D. Luzi, “Elastic stateful stream pro-
cessing in storm,” in Proceedings of 2016 International Conference on
High Performance Computing & Simulation (HPCS). IEEE, 2016, pp.
583–590.

[10] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu, “Auto-parallelizing
stateful distributed streaming applications,” in Proceedings of the 21st
international conference on Parallel architectures and compilation tech-
niques, ser. PACT ’12. ACM Press, 2012, pp. 53–63.

[11] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic Scaling for
Data Stream Processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1447–1463, 2014.

[12] J. Ding, T. Z. J. Fu, R. T. B. Ma, M. Winslett, Y. Yang, Z. Zhang, and
H. Chao, “Optimal Operator State Migration for Elastic Data Stream
Processing,” arxiv:1501.03619 [cs], jan 2015.

[13] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann, “Stormy:
An Elastic and Highly Available Streaming Service in the Cloud,” in
Proceedings of the 2012 Joint EDBT/ICDT Workshops, ser. EDBT-ICDT
’12. ACM Press, 2012, pp. 55–60.

[14] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, and Others,
“The Design of the Borealis Stream Processing Engine.” in Proceedings
of the Second Biennial Conference on Innovative Data Systems Research
(CIDR 2005), 2005, pp. 277–289.

[15] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker,
“Fault-tolerance in the borealis distributed stream processing system,”
in Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’05. ACM, 2005, pp. 13–24.

[16] A. Martin, C. Fetzer, and A. Brito, “Active replication at (almost) no
cost,” in Proceedings of the 2011 IEEE 30th International Symposium
on Reliable Distributed Systems, 2011, pp. 21–30.

[17] T. Heinze, M. Zia, R. Krahn, Z. Jerzak, and C. Fetzer, “An adaptive
replication scheme for elastic data stream processing systems,” in
Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems, ser. DEBS ’15. ACM Press, 2015, pp. 150–161.

[18] S. Chandrasekaran, M. A. Shah, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Mad-
den, and F. Reiss, “TelegraphCQ: Continuous Dataflow Processing,” in
Proceedings of the 2003 ACM SIGMOD international conference on
on Management of data, ser. SIGMOD ’03. ACM Press, 2003, pp.
668–668.

[19] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available, fault-
tolerant, parallel dataflows,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of Data, ser. SIGMOD ’04.
ACM Press, 2004, pp. 827–838.

[20] G. Graefe, “Encapsulation of parallelism in the volcano query processing
system,” in Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’90. ACM, 1990,
pp. 102–111.


	Introduction
	Background
	Framework Overview
	Error-free Execution
	Replication-aware Task Placement

	Failure Recovery
	Performance Evaluation
	Experiment Setup
	Test Applications
	Evaluation Methodology

	Performance of Error-free Execution
	Overhead of State Persistence
	Overhead of Maintaining More Replicas

	Performance of Recovery
	Recovery from a Single Error
	Recovery from Multiple Errors


	Related Work
	Conclusions and Future Work
	References

