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Abstract. As a growing number of software developers apply machine
learning to make key decisions in their systems, adversaries are adapting
and launching ever more sophisticated attacks against these systems. The
near-optimal evasion problem considers an adversary that searches for a
low-cost negative instance by submitting a minimal number of queries
to a classifier, in order to effectively evade the classifier. In this position
paper, we posit several open problems and variants of the near-optimal
evasion problem. Solutions to these problems would significantly advance
the state of the art in secure machine learning.
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1 Introduction

A number of systems and security engineers have proposed the use of machine
learning techniques for detecting or filtering miscreant activities in a variety of
applications, e.g., spam, intrusion, virus, and fraud detection. All known de-
tection algorithms have blind spots: classes of miscreant activity that fail to be
detected. While learning enables the detector to adapt, adversaries can still ex-
ploit blind spots to evade detection. A significant challenge is to quantify how
effectively an adversary can discover blind spots by querying the detector.

Consider, for example, a spammer who wishes to minimally modify a spam
message so it is not classified as spam by a public webmail system’s spam clas-
sifier (here cost is change in the value of the message after modification). The
spammer can observe the classifier’s behavior by creating a dummy account on
the webmail system. By observing the responses of the spam detector to queries,
the spammer can search for a minimal modification. Similarly for host-based
intrusion detection, an intruder may be forced to obfuscate an attack to avoid
detection. The attacker can alter their exploit by inserting no-ops, using syn-
onymous system calls, or even choosing between one of several possible exploits.

While instances have associated costs to the adversary, a second type of cost
suffered by the attacker is the number of queries needed to search for evading
instances. Larger numbers require additional resources and arouse increasing
suspicion of malicious behavior. In practice, adversaries employ a number of
techniques to mitigate this second cost, such as opening multiple webmail ac-
counts or rate-limiting spam or worm probing attacks; these strategies require
the attacker use additional sophistication and computational resources.



Here we revisit the near-optimal evasion problem—a theoretical formulation
that quantifies how effectively a classifier can be evaded through querying. We
outline open problems and introduce novel variants of the original formulation.

1.1 The Near-Optimal Evasion Problem

The Near-Optimal Evasion Problem is a formulation of adversarial evasion that
quantifies the hardness of search for low-cost negative instances in terms of the
number of queries used. As first posed by Lowd and Meek [6] under the name
adversarial classifier reverse engineering, the near-optimal evasion problem is to
quantify the query complexity required by an adversary to find a near-minimal
cost negative instance in terms of the size of the feature space and the desired
accuracy. By analyzing the query complexity for a family of classifiers, near-
optimal evasion provides a notion of how hard that family is to evade; e.g., if
a spammer must send exponentially many queries per dimension of the feature
space, it is difficult for the spammer to successfully improve their spam.

In this setting, we assume instances are represented in a D-dimensional fea-
ture space (e.g., X ⊆ RD) and the target classifier f belongs to a family F of
binary classifiers where each classifier f ∈ F is a mapping from feature space X
to a label in {'−', '+'}. A deterministic f ∈ F partitions X into two sets—the
positive class X+

f = {x ∈ X | f (x) = '+'} and the analogous negative class X−f
which we take to be the normal instances. We assume that the adversary is
aware of at least one instance in each class, x− ∈ X−f and xA ∈ X+

f , knows F
and not f , but can observe f (x) for any x ∈ X by issuing a membership query.

Adversarial Cost We assume the adversary has a cost function A : X → R0+;
e.g., for a spammer this could be edit distance on messages. The adversary wishes
to optimize A over the negative class X−f ; e.g., the spammer wants to send spam
that will be classified as normal email ('−'). Typically the cost function is a
distance to a target instance xA ∈ X+

f that is most desirable to the adversary;

e.g., an `p distance induces cost Ap (x) =
∥∥x− xA

∥∥
p
.

Lowd and Meek [6] define minimal adversarial cost (MAC ) of a classifier f
to be the best lower bound on the cost that any negative instance obtains

MAC (f ,A) , inf
x∈X−

f

[A (x)] . (1)

They further define a data point to be an ε-approximate instance of minimal
adversarial cost (ε-IMAC ) if it is a negative instance with cost no more than a
factor of (1 + ε) times the MAC ; i.e., every ε-IMAC is a member of the set1

ε-IMAC (f ,A) ,
{

x ∈ X−f
∣∣∣ A (x) ≤ (1 + ε) ·MAC (f ,A)

}
. (2)

The goal of the Near-Optimal Evasion Problem is to quantify the worst-case
query complexity required for an adversary to infer an ε-IMAC , depending on

1 We use ‘ε-IMAC ’ to refer both to this set and its members.



the richness of the family of classifiers. Finding an ε-IMAC for a singleton family
can be achieved offline without any queries, whereas if the family is large, many
more queries will be necessary to find an ε-IMAC . Formally,

A family of classifiers F is ε-IMAC searchable under a family of cost
functions A if for all f ∈ F and A ∈ A, there is an algorithm that finds
x ∈ ε-IMAC (f ,A) using polynomially many membership queries in D
and Lε = log 1

ε . We will refer to such an algorithm as efficient.

1.2 Security and the Near-Optimal Evasion Problem

The near-optimal evasion problem sheds light on several real security issues. The
problem abstracts the scenario of an adversary who wishes to launch a specific
attack that is blocked by a classifier-based defense. The attacker has a limited
number of probing opportunities after which she must send an attack as close
as possible to his originally intended attack—a near-optimal attack.

In the case of email spam, the spammer may originally have a message that
will be detected as spam. She probes, finds a near-optimal message that evades
the filter, and sends this message instead. In the case of an intruder, she has a
preferred sequence of system calls that will be detected as intrusions. She probes,
finds and executes a near-optimal sequence that evades the detector.

With this framework in mind, we now clearly see the role of a defender: to
provide a classifier that resists near-optimal evasion. Practical implementation
requires careful selection of costs and realistic bounds on the number of probes an
adversary can perform. Resulting lower-bounds on the number of probes required
for near-optimal evasion provide significant evidence of effective security.

1.3 Previous Work

Lowd and Meek [6] first introduced near-optimal evasion, and developed efficient
methods that reverse-engineer linear classifiers in both real-valued and Boolean
feature spaces for `1 costs. Further, Nelson et al. [7] generalized their result from
linear classifiers to the family of convex-inducing classifiers that partition the
space of instances into two sets one of which is convex. In generalizing to this
family, they showed that near-optimal evasion does not require an estimate of the
classifier’s decision boundary or state. Nelson et al. [8] further explored general
`p costs and found not all are ε-IMAC searchable for convex-inducing classifiers.

Dalvi et al. use a cost-sensitive game theoretic approach to preemptively
patch a classifier’s blind spots [5]. They construct a modified classifier designed
to detect optimally modified instances. Biggio et al. [3] extend this game theoretic
approach and propose hiding information or randomization as additional defense
mechanisms for this setting. However, they do not explore near-optimal evasion
for randomized classifiers as we propose in Section 3.3.



2 Open Problems in the Theory of Near-Optimal Evasion

A number of unanswered questions remain about the near-optimal evasion prob-
lem. Here we motivate these problems and suggest potential directions.

Question 1: Can we find matching upper and lower bounds for evasion
algorithms? Is there a deterministic strategy with polynomial query complexity
for all convex-inducing classifiers? In previous work, linear and convex-inducing
classifiers were shown to be ε-IMAC searchable for `1 costs by demonstrating
algorithms with polynomial query complexity. Currently, it is known that for
convex positive class,O

(
Lε +

√
LεD

)
queries are sufficient to find a near-optimal

instance, although the tightest known lower bound in this case is O (Lε +D).
In the case of convex X−f , the best known algorithm is a randomized ellipsoid
approach (cf. [2]) that finds a near-optimal instance with high probability using
O∗
(
D5
)

queries (ignoring logarithmic terms).
Question 2: Is there some family larger than the convex-inducing classifiers

that is ε-IMAC searchable? Are there families outside of the convex-inducing
classifiers for which near-optimal evasion is efficient? Existing approaches to
near-optimality have built on the machinery of convex optimization. However,
many interesting classifiers are not convex-inducing classifiers. Currently, the
only known result due to Lowd and Meek is that linear classifiers on Boolean
instance space are 2-IMAC searchable.

Question 3: Is some family of SVMs ( e.g., with a known kernel) ε-IMAC
searchable for some ε? Can an adversary incorporate the structure of a non-
convex classifier into the ε-IMAC search? Consider SVMs with non-linear ker-
nels. The classifier is non-convex in the original feature space, while in the Re-
producing Kernel Hilbert Space the classifier is linear but the cost function may
no longer be easy to minimize. However SVMs have other properties that may
facilitate near-optimal evasion. For instance, in cases where there are few support
vectors, one only needs to find these instances to reconstruct the classifier.

Question 4: Are there characteristics of non-convex, contiguous bodies that
are indicative of the hardness of the body for near-optimal evasion? What about
non-contiguous bodies? It appears that the family of contiguous bodies (i.e., the
set of all classifiers for which either X+

f or X−f is a contiguous set) cannot be gen-
erally ε-IMAC searchable since this family includes members with many locally
minimal cost regions which are hard for local search or binary search proce-
dures to avoid, but perhaps some subsets of this family are ε-IMAC searchable.
For families of non-contiguous bodies, ε-IMAC searchability seems impossible to
achieve (disconnected components could be arbitrarily close to xA) unless the
classifiers’ structure can be exploited; e.g., as we discuss for SVMs above.

Question 5: For what classes of classifiers is reverse-engineering as easy
as evasion? Reverse-engineering is the process of querying to learn the decision
boundary, and is sufficient for solving the evasion problem. It is now known that
the query complexity of reverse-engineering linear classifiers is identical to that
of evasion, while reverse-engineering is strictly more difficult for general convex-
inducing classifiers [8]. It is unknown whether there exists a class in between
linear and convex-inducing classifiers on which the two tasks are equivalent.



3 Alternative Models for Evasion

Here we suggest a number of variants of near-optimal evasion that generalize or
reformulate the original problem to capture new aspects of the overall challenge.

3.1 Additional Information about Training Data Distribution

Consider an adversary that knows the training algorithm and obtains samples
drawn from a natural distribution. A few interesting settings include:
1. The adversary’s samples are a subset of the training data.
2. The adversary’s samples are from the same distribution as the training data.
3. The adversary’s samples are from a perturbation of the training distribution.

With this additional information, the adversary may estimate their own classifier
f̃ and analyze it offline. Some open questions include:

Question 6: What can be learned from f̃ about f ? How can f̃ best be used
to guide search? Can the sample data be directly incorporated into ε-IMAC -
search? Relationships between between f and f̃ can build on existing results in
learning theory. A possibility is to bound the difference between MAC (f ,A) and
MAC (f̃ ,A) in one of the above settings. If the difference is sufficiently small
with high probability, then a search for an ε-IMAC could use MAC (f̃ ,A) to
initially lower bound MAC (f ,A). This should reduce search complexity since
lower bounds on the MAC are typically harder to obtain than upper bounds.

3.2 Beyond the Membership Oracle

Question 7: What types of additional feedback may be available to the adversary
and how do they impact the query complexity of ε-IMAC -search? In this scenario,
the adversary receives more from the classifier than just a '+'/'−' label. For
instance, suppose the classifier is defined as f (x) = I {g (x) > 0} for some real-
valued function g (as is the case for SVMs) and the adversary receives g (x) for
every query instead of f (x). If g is linear, the adversary can use D + 1 queries
and solve a linear regression problem to reverse engineer g . This additional
information may also be useful for approximating the support of an SVM.

3.3 Evading Randomized Classifiers

In this variant of near-optimal evasion, we consider randomized classifiers that
generate random responses from a distribution conditioned on the query x. To
analyze the query complexity of such a classifier, we must first generalize our
concept of the MAC . We propose the following candidate generalization:

RMAC (f ,A) = inf
x∈X−

f

{A (x) + λP (f (x) = '−')} .

If f is deterministic, we need λ ≥ MAC (f ,A) for this definition to be equivalent
to Eq. (1) (e.g., λ = A

(
xA
)

+ 1 is sufficient); otherwise, a trivial minimizer is
xA. For a randomized classifier, λ balances cost with probability of success.



Question 8: Given access to the membership oracle only, how difficult is
near-optimal evasion of randomized classifiers? Are there families of randomized
classifiers that are ε-IMAC searchable? Potential randomized families include:
1. Classifiers with fuzzy boundary of width δ around a deterministic boundary
2. Classifiers based on the class-conditional densities for a pair of Gaussians, a

logistic regression model, or other members of the exponential family.
Evasion of randomized classifiers seems to be more difficult than for deter-

ministic classifiers as each query provides limited information about the query
probabilities. Based on this argument, Biggio et al. promote randomized clas-
sifiers as a defense against evasion [3]. However, it is not known if randomized
classifiers have provable worse query complexities.

3.4 Querying with Real-World Objects

Question 9: How can the feature mapping be inverted to design real-world in-
stances to map to desired queries? How can query algorithms be adapted for
approximate querying? In the original model of evasion, it was assumed that
the attacker could observe f (x) for any x ∈ X . Implicit in this capability is the
assumption that the attacker has knowledge of the feature mapping from real-
world objects such as raw emails or network packets, into the feature space in
which the defender learns. Even when this is true, the mapping may not be one-
to-one or onto: multiple emails may map to the same bag-of-words vector, and
some instances in feature space may not correspond to any real-world object.

3.5 Evading an Adaptive Classifier

Finally we consider a classifier that periodically retrains on queries. This variant
is a multi-fold game between the attacker and learner, with the adversary now
able to issue queries that degrade the learner’s performance. Techniques from
game-theoretic online learning should be well-suited to this setting [4].

Question 10: Given a set of adversarial queries (and possibly additional
innocuous data) will the learning algorithm converge to the true boundary or can
the adversary deceive the learner and evade it simultaneously? If the algorithm
does converge, at what rate? To properly analyze retraining, it is important to
have an oracle that labels the points sent by the adversary. If all points sent by
the adversary are labeled '+', the classifier may prevent effective evasion, but
with a large numbers of false positives due to the adversary queries in X−f ; this
itself constitutes an attack against the learner [1].

4 Conclusion

The intersection of security, systems, and machine learning research has yielded
significant advances in decision-making for complex systems, but has also intro-
duced new challenges in protecting against malicious users. While earlier research



laid the groundwork for understanding the near-optimal evasion problem, fun-
damental problems remain unaddressed. In this paper, we discussed several of
these problems and variants, and proposed potential avenues for future research.
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