
Evolving Quantum Circuits using Genetic Programming

B. I. P. Rubinstein
The University of Melbourne,

Parkeville,
Melbourne, Australia 3052

b.rubinstein@ugrad.unimelb.edu.au

Abstract - This paper presents a new representation and
corresponding set of genetic operators for a scheme to
evolve quantum circuits with various properties. The
scheme is a variant on the techniques of genetic
programming and genetic algorithms, having
components borrowed from each. By recognising the
foundation of a quantum circuit as being a collection of
gates, each operating on various categories of qubits
and each taking parameters, the scheme can successfully
search for most circuits. The algorithm is applied to the
problem of entanglement production.

perfect sense to investigate the use of known automatic
techniques, such as genetic programming and genetic
algorithms which have proven to exhibit many desirable
properties such as requiring no auxiliary information about
the search space, except access to some kind of raw fitness
function, and being highly robust.

Section 2 of this paper is a brief overview of the basics
of quantum computing, and of the work done in the
application of GP to quantum computing. Section 3
outlines the GP scheme for this paper, detailing its
representation scheme and operators. Section 4 illustrates
the aforementioned scheme applied to quantum
entanglement production. Section 5 presents the results of
section 4. Section 6 then discusses these results and the
scheme in more detail.

1 Introduction

At the rate of current technological advancement, computer
memory and microprocessors are continually decreasing in
physical size and increasing in speed - people of all
backgrounds, be they scientists, engineers or home users,
demand better performance from their computers every day.
If these trends continue, by the year 2020 (Williams 1998)
computer architectures will have become so small
physically, that the effects of quantum mechanics will take
over from the classical physics that today’s computer
scientists assume.

2 Background

2.1 Quantum Computing

The basic processes in a quantum circuit run parallel to
those of a classical electrical circuit, except for a few twists.
First we start with the units of information: qubits. Like a
classical bit, a quantum bit may take values in 0,1{ } - called

eigenstates. Unlike a bit, however, a qubit may also exist
in a superposition of its eigenstates as long it remains
unobserved. In this way, when we are describing the state
of a qubit, we refer to its amplitudes as being the quantities
that determine the weighting of the afore mentioned
superposition. For example, consider the following two
states written in the traditional ‘ket’ notation of quantum
computing:

The study of quantum computers aims to understand
what the capabilities and limitations of such systems could
be if they were to be created. Now what makes quantum
computers so exciting, is that quantum information theory
envisions a world where quantum computers, as well as
being able to handle most traditional classical algorithms,
will be able to achieve far more than is possible with the
famous Turing model - the basis of computer science today.
Such seemingly wondrous abilities include: factoring large
composite integers in polynomial time (assumed intractable
by the popular public key encryption system RSA) (Shor
1994) and unbreakable quantum cryptography, where a
secret key has been securely sent over a distance of 30km
(Marand 1995).

ψ 1 = 1

2
0 + 1(), ψ 2 = 1

2 0 + 3
2 0

Here, the amplitudes are
1

2 ,
1

2 and 1
2 , 3

2

respectively (note: amplitudes are complex). The
probability of measuring a qubit as being in a particular
eigenstate is simply the magnitude squared of the

eigenstate’s amplitude - observing a qubit in state ψ 1 will

result in 0 or a 1 with equal likelihood, and for ψ 2

we’d get 0 25% and 1 75% of the time.

So, it is clear that the study of quantum computation is
well worthwhile, but still there have not been that many
quantum algorithms discovered as yet. This is due to the
fact that the generation of such algorithms or circuits is
difficult for a human researcher: they are unintuitive and
computationally intensive (see Section 2.1). Thus, it makes

To describe the state of an n-qubit system, a total of 2n

amplitudes are needed; one for each of the 2n possible
eigenstates. Note also that the state of an n-qubit register is
often represented as a 2n by 1 column vector of amplitudes,
and although one may always write the combined state of a
number of qubits from their individual states, there are
times where the converse is not possible. We illustrate
these ideas with the following example. Consider the
quantum state:

general gates which emulate all single or double qubit gates.
We won’t go into the workings of these gates here, but will
note that gates require certain ‘types’ of qubits to operate on
(ie. the Walsh-Hadamard operates on one qubit, the CNOT
gate may have any number of controls/targets, etc.), and
some require real valued parameters (ie. an angle θ for the
rotation gate).

Finally, recall that the size of the column vector required

to describe a register grows like O 2n() with the number of

qubits, so it is clear that the complexity of a classical
simulation of a quantum computer is exponential, making
the simulation of large systems infeasible.ψ = 1

2 00 + 11() ≅

1
2

0

0
1

2



















For further introduction into the background knowledge
in quantum computing, see (Williams 1998).

2.2 Work Done So Far
If qubit 1 is measured (count as 0 from right) as a 1

(50% probability) then subsequent measurement of qubit 0
will result in 1 (100% probability). Similarly for

measuring a 0 . This effect is called quantum
entanglement. This entangled pair is known as the EPR
pair (Einstein, Podolsky, Rosen). Such a system may not
be described as individual qubit state superpositions.

Unlike other areas of application, there has been relatively
little work done applying GP to quantum computation.
Research has typically involved the investigation of basic
representation schemes, and the use of these schemes in
finding results competitive with hand calculation on the few
known quantum algorithms. For example, three schemes
outlined by Spector (Spector 1999), the traditional tree-
based GP (Koza 1992) and a stack-based linear genome GP
and stackless linear genome GP as alternatives, were applied
to algorithms including the early promise problem (to
determine whether a blackbox binary function on n-bits is
uniform or balanced) and the and-or query problem (to find
the result of a known boolean function over values returned
by a blackbox function). In fact at the time, the solution
obtained for the 2-bit and-or query problem, calling the
blackbox function only once, was better than any previously
known result. We shall return to the tree-based GP later,
and analyse its appropriateness for problems in quantum
computing (Section 6.3). The fitness evaluation was based
on the probable outcome of measurement of the qubits after
computation, in combination with misses and parsimony.

Due to the very nature of a quantum computer, its
unobserved evolution through time is governed by the
Schröedinger equation of quantum mechanics. From its
solution it can be shown that this evolution is unitary.
Without going into the inner workings of quantum
computation, we note that this unitarity results in the
ability to describe the operation of a quantum computer
(without intermediate measurement) as a unitary matrix
acting on the column vector for the initial register (so the
matrix is 2n by 2n). Additionally, it has been shown that a
quantum computer (an evolution of a qubit register) is
equivalent to a sequence of quantum gates acting on qubits
of the register. Each such gate has a corresponding unitary
matrix, and there are various rules for combining the gate
matrices to attain the overall circuit matrix. For example
consider the EPR pair production circuit (Fig.1) operating
on two qubits (an input of 00 results in the EPR pair from

above).

While the schemes put forward by Spector would
typically be used to find circuits that met required outcomes
for given inputs (ie. fitness cases), the scheme proposed by
Williams (Williams 1999) uses the unitary matrix for a
known quantum circuit to find possibly alternative circuits.
In this way, more of the available information on a given
algorithm is be utilised, but a circuit for the given problem
must already be known. This is not necessarily bad, as it is
very useful for finding alternate circuits, and could be used
in conjunction with ideas of novelty (ie. penalising a circuit
for looking similar to a known circuit) to produce such
alternatives.

W

Figure 1: EPR pair production circuit

First the Walsh-Hadamard gate operates on qubit 1
(counting from 0 on the bottom) represented as the top
horizontal line, and then a Controlled-NOT gate with qubit
1 as control and qubit 0 as target completes the circuit.
Some other types of gates commonly used include
conditional phase change, rotation, NOT, NAND, and some

In addition, it should be noted that the above fitness
functions can be obtained from each other: a complete
unitary matrix can be constructed given enough fitness cases
(ie. making the mappings of input registers as columns) and

HADAMARD CNOT U_THETA

qubit string

100

control qubits

100

target qubits

011

qubit string

110

parameter
10101101

θ

W
Uθ

(a) (b)

Figure 2: (a) a quantum circuit and its (b) corresponding representation

a partial matrix (where some entries are ignored) given a few
fitness cases.

category, we have a hierarchical chain of precedence, where
each category is ranked uniquely. In this paper, we have at
most two qubit categories (targets and controls), the target
category has been arbitrarily chosen to take precedence over
the control qubits.

3 The GP Scheme

3.1 Representation The binary string for a parameter of a gate decodes to a
real decimal value, by simply mapping it to a specific
interval. In this paper, we only have angles of rotation, so
this interval is simply −π ,π[] . The length for parameter
strings is arbitrary chosen, so that the resolution of the
mapping is as fine as desired (ie. more bits give closer
approximations to a continuous number line). This
representation scheme is illustrated with the following
(Fig.2):

In section 2.1, we saw that a quantum circuit is a sequence
of quantum gates, where the operation of each gate is
entirely determined by:

• the gate’s type
• the qubits acted on by the gate
• the values of any parameters required by the gate

In addition we noted that the second and third items of the
above list, qubit operands and parameters, appear in a
variety of flavours. For example, a Controlled-NOT gate
takes some number of control qubits, from which it may
NOT (ie. swap) the state amplitudes of its target qubits.
The generalised 2-qubit gate takes four real parameters (ie.
different kinds of rotations, etc.). So we see in general, that
a gate has a type, a number of sets of qubit operands in
different categories and some sets of parameters in different
categories. This is the basis for the GP scheme.

A gate which is not syntactically correct, which does not
act on any qubits, or has no control or target qubits when it
is required to, is treated simply as the identity
transformation.

3.2 Genetic Operators

Making up the set of operators, we have crossover and
mutation. Crossover operates on all the levels of an
individual’s structure: the gates, each category of qubit
operands and each parameter type. Gate crossover between
two parent computers (which may have different numbers of
gates) consists of picking a gate from each parent at random,
and then swapping all gates between the parents after these
two points - the canonical variable length GA crossover,
closely related to tree-based GP crossover. Crossover
between qubit and parameter binary strings can only occur
between strings of like category, and proceeds in the same
way as the crossover operator for the fixed length GA: pick
a crossing point, and then swap bit values between the two
strings after the point. This crossover between like
structures is analogous to the crossover of tree-based GP
with automatically defined functions (ADFs) and result
producing branches (RPBs). By restricting crossover of an
ADF with another ADF and an RPB with another RPB,
essential syntactical correctness is preserved and the RPBs
and ADFs of individuals evolve in parallel (which is a good

Consider a (quantum) circuit. It is represented as a list
of gate structures, where the size of this circuit (number of
gates) is variable, as in the variable length GA. Each gate
structure contains its type, which is one of an allowable set
of gate types including the usual CNOT, HADAMARD and
other unitary evolutions, but also an OBSERVE gate which
can measure certain qubits in the register, thereby collapsing
superposition (a vital technique in several famous
algorithms), and a binary string for each category of qubit
and parameter for that gate.

The length of each qubit bit-string is simply equal to the
number of qubits n _ qubits in the system. The ith bit in a
qubit binary string determines whether or not qubit
n _ qubits − i() of the register belongs to the corresponding

category of qubits for that gate. In other words, if the last
bit of a binary string is 1 then qubit 0 is acted on, if the
first bit were 0 then the last qubit n _ qubits − i() is not acted
on. As we cannot have a qubit belonging to more than one

thing, as their roles are quite different; ‘ideas’ or schemata
that are good for ADFs may not be as good within an
RPB).

3.4 Summary and Steps for the GP

As a whole, the scheme proceeds in the following fashion:
Two methods for combining these crossover operators

have been investigated: uniform and weighted crossover.
Uniform crossover on two randomly paired parents, consists
of first picking a gate, or qubit operand set or parameter
completely at random from anywhere within the computer
(ie. list of gates), where each gate, set of operands and
parameter has equal probability of selection. Then we pick
a similar structure (either gate, qubit operand set of like
category or like parameter) from the second parent, at
random. Finally, the appropriate crossover operator is
applied to the selected gates/binary strings. In this way, we
are thinking of a computer as a tree with each gate, qubit
operand set and parameter as nodes, picking a node at
random from parent 1, and then a similar node from parent
2. Weighted crossover proceeds by simply picking an
operator at random, where the operators (gate,
control/normal qubit, target qubit, parameter) have
associated weights. Once the operator is decided upon, two
appropriate structures within the parents are selected
randomly, and operated on.

 (1) the initial population of computers is created
randomly, where the size of the population is M ,
the maximum number of gates in a computer is
max _ gatesinit and the maximum number of qubits
operated on by a gate is max _ qubitsinit .

 (2) the fitness of each individual is evaluated with the
provided fitness cases, relevant to the problem.

 (3) a new population is selected, using roulette wheel
selection, each slice of the wheel is simply
proportional to 1 − fitness()

 (4) the new individuals are paired off randomly, and
are crossed with probability pc , according to the
uniform or weighted crossover schemes

 (5) mutation is performed with low probability pm, in
an attempt to retain/regain useful schemata

 (6) repeat steps 2-5 until either G generations have
been run, or some threshold for fitness has been
achieved.

Mutation is performed with small probability (typically
0.001, as mutation is more of an insurance against loss of
important schemata, than a search procedure), where a gate
is mutated by replacing it with a new random gate.

Now that we have laid the foundations for quantum
computing, and have put forward a plausible scheme for
evolving quantum circuits, we are equipped to tackle some
problems with the adaptive plan (section 4 and 5) and
further discuss the reasons and features of the scheme, and
any observations from its application (section 6).

3.3 The Fitness Measure and Fitness Cases

The fitness function employed for this scheme is
standardised, that is all fitness values lie in the range 0,1[]
with smaller values being better. Firstly, given a set of
fitness cases consisting of input registers and desired output
registers, we run the set of input registers through a
computer and define its error as...

4 Applications

4.1 Quantum Entanglement Production

Recall the example of section 2.1 (Fig.1) of a circuit that
produces the important EPR entangled pair from a classical
input of 00 . As we have already mentioned, entanglement

is a very important feature of quantum mechanics which is
partially responsible for the power of many of today’s
quantum algorithms. To test the GP scheme detailed
above, it was applied to the problem of generating circuits
for production of 2, 3, 4 and 5 maximally entangled qubits
respectively (Table.1)

error = o ij −d ij

j

∑
i

∑

...where we take for each case i , the sum of the magnitudes
of the differences between the amplitudes of the outcome
registers o i* and the corresponding desired output registers
d i* (j over the number of states), and take the sum of all of

these. In this way, an error of zero is clearly optimal, to
adjust these errors to fitness’s within the required interval,
we divide through by the error of the worst individual so
far. In this way, at any one time, all errors must be equal to
or less than this value, and so dividing through by the
worst error will map the errors to the desired range. Of
course, in any post-run analysis, one would have to go
back, and re-scale for any changes in worst-so-far through
the run, so that progress remains objective.

The parameter length and the (overly) extensive gate set
were used to test the limits of the scheme, as it turns out
the population size (restricted by memory considerations)
was easily sufficient for the problem. Only one fitness case
was used, because this was the necessary function of the
circuit (outputs from other inputs are irrelevant, we just
wanted an easy method of producing entangled sets of
qubits). The crossover and mutation probabilities were
chosen intuitively, as was the maximum number of gates
(considering the simplicity of the EPR circuit of Fig.1).

OBJECTIVE: Find a quantum circuit that produces n maximally entangled

qubits in the form 1
2 00...0 + 11...1() . ie. generalised EPR

pair
QUANTUM TERMINALS: number of qubits in register = n = 2,3,4,5{ }, param _length= 8

QUANTUM GATES: IDENTITY, HADAMARD, U_THETA, CNOT,
CPHASE, NOT, NAND, OBSERVE

FITNESS CASES: One case: input register 00...0

 output register 1
2 00...0 + 11...1()

RAW FITNESS: Sum of the distances between the amplitudes of the desired
output register and the actual output register

STANDARDISED FITNESS: the raw fitness divided by the worst so far raw fitness

PARAMETERS: M = 5000, G = 50, f t = 0.001, max_ gates = 3, max _qubits = 2,

pc = 0.8, pm = 0.01, uniform crossover used

TERMINATION
PREDICATE:

Max. generations G exceeded, or threshold fitness ft achieved

Table.1: Tableau for entangled qubit production problem

5 Results

W

W
5.1 Quantum Entanglement Production

For each of the chosen sizes of the problem, a completely
correct solution was discovered by the GP scheme. Due to
the apparent simplicity of the solutions (with hind-sight)
and the large population size, most of the solutions were
generated in between 2 and 8 generations (where each
generation took between about 30 seconds and several
minutes, due to the complexity of quantum computing).

Figure.4: circuits for the 3-entangled qubit problem (left
corresponds to the top listing of the circuits in Fig.3

And finally, we have the structures and circuits obtained
for n = 4 and n = 5 below:

For n = 2 , the circuit found had no redundancy, and was
identical to the one shown in Fig.1 above. For n = 3 two
revealing solutions were found (Fig.3) Hadamard gate: qubit 2

Controlled NOT gate: control qubit 2 ; target qubits 0, 1, 3
Controlled NOT gate: control qubits target qubits 0, 1, 2
Controlled NOT gate: control qubit 2 ; target qubits 0 Hadamard gate: qubit 2
Hadamard gate: qubit 1 Controlled NOT gate: control qubit 2 ; target qubits 0,1,3,4
Controlled NOT gate: control qubits target qubits 0, 2
Controlled NOT gate: control qubit 1 ; target qubits 0

Figure.5: solutions for the 4 and 5-entangled qubit problemsControlled NOT gate: control qubit 1 ; target qubit 2

W W

Controlled NOT gate: control qubits target qubits 1, 2
Controlled NOT gate: control qubit 1 ; target qubits 0
Controlled NOT gate: control qubit 0 ; target qubits 1
Hadamard gate: qubit 2
Controlled NOT gate: control qubit 1 ; target qubit 0
Controlled NOT gate: control qubit 1 ; target qubits 0
Controlled NOT gate: control qubit 2 ; target qubits 0
Controlled NOT gate: control qubit 0 ; target qubit 1

Figure.3: two solutions for 3-entangled qubit problem

The circuit diagrams for these two solutions (with
redundancies removed by hand): Figure.6: circuits for the 4 and 5-enttangled qubit problem

(left corresponds to the top listing of the circuits in Fig.5

6 Discussion
Then in a similar fashion, if we choose to use all but one

of the categories, then we have the number of ways as:

6.1 Entanglement Production c

c−1






q

i






c −1()i

i=0

i=q

∑
The application of the proposed GP scheme to entanglement
production circuits was successful - a number of circuits for
different sized registers were found that produced maximally
entangled registers of qubits. However, it is clear that the
methods for attaining these results could have been
improved in a number of ways. For example, it would
have been prudent to remove non-essential gates from the
gate-set, leaving only the Walsh-Hadamard and the
Controlled-NOT gates. This would have increased the
speed of the calculations. In fact, a small number of runs
were conducted this way, and sometimes a result was
actually produced in the initial population, which clearly
would have been a good representation of the space.
However the purpose was also to test the presented scheme,
which it did.

And so the total number of ways in which we may
operate on the system of qubits is:

c

j






q

i






j
i

i=0

i=q

∑
j=0

j=c

∑

Now consider the parameters for some gate. The number
of values taken by a single known parameter is just 2k

. So
the number of ways we may choose an unknown parameter
is

p

1





2 k

In fact, already from the relatively small number of
circuits we have produced for this problem, we can see the
general solution: the Walsh-Hadamard gate takes a qubit to
a balanced superposed state, after which this superposition
is spread to the other qubits by using it as control for
Controlled-NOT gates which then target the other qubits
(see Fig.4 and 6). In addition, this spread of entanglement
can be achieved by taking a qubit already targeted
previously, as a control and targeting a new qubit. In
summary, a general solution has been obtained, and we
have gained a better understanding of the generation
solution.

And following from this, the number of ways in which
we may choose two parameters for a gate is:

p

2





22 k

So the total number of ways we may choose the
parameter settings for a known gate is the sum:

p

h





2hk

h=0

p

∑
6.2 Further Discussion and Analysis of the Scheme

Now, if the gate is of unknown type, then the number of
possible gate configurations is:

Consider now the presented GP scheme in its most general
case, where not only are there two qubit operand categories
and one parameter type, but we have c operand categories
and p parameter types, with the number of qubits in the
system equal to q , the number of bits used to represent a
parameter equal to k , and the number of gate types equal to
t . The total number of ways in which we may operate on
all the qubits in any category (ie. simply decide which
category a qubit is in) is c

q . To operate on all but one of
the qubits using any category, we have...

p

h





2 hk

h=0

p

∑

 


 c

j






q

i






j
i

i=0

i=q

∑
j=0

j=c

∑







 t

So, if we can have exactly n gates in a computer, then
the total number of possible computers is simply:

p

h





2hk

h=0

p

∑

 


 c

j






q

i






j
i

i=0

i=q

∑
j=0

j=c

∑







 t











n

q

q −1





c

q−1

And finally, if we are allowed to have a total number of
n gates, then the solution space is exactly:...and so on. Hence the number of ways in which the qubit

bit strings for a gate may be configured, using all
categories, is simply the sum of these possibilities: p

h






2hk

h=0

p

∑

 


 c

j






q

i






j
i

i=0

i=q

∑
j=0

j=c

∑







 t











g

g=0

g=n

∑
q

i





c

i

i=0

i=q

∑
The number of schemata follows from this result, by

noting that: the total number of ways in which we may

operate on all the qubits in any category (ie. simply decide

which category a qubit is in) is simply c +1()q
 instead of c

q

(since we are essentially including the meta-don’t-care-
symbol), and similarly the number of values taken by a
single known parameter becomes 3k from 2k . This gives
the number of schema for a computer of length up to and
including n as:

individual with a handful of values for the number of qubits
terminal. The disadvantage, as with any tree-based GP and
most if not all such evolutionary techniques, is redundancy,
but more importantly there is also a separation of return
value and side-effect on the qubit register, making it
particularly hard for GP to retain an important return value
and modify a side effect. In other words, arithmetic
functions that operated solely on values returned by other
functions/gates and terminals were mixed in with gates that
actually affected the register.

p

h






3hk

h=0

p

∑

 


 c

j






q

i






j +1()i

i=0

i=q

∑
j=0

j=c

∑







 t











g

g=0

g=n

∑
Unlike the TBGP, the variation GP scheme presented

here does not have this side-effect/function value return
problem, as the qubit operands and parameters are
completely separated from the gates (in terms of crossover,
etc). Furthermore, schemata that may be important in one
category of qubit operands or parameter may not be
important in other categories, and so our scheme makes sure
that good schemata within one category have the
opportunity to develop. For example (see Fig.6) it is clear
from the discussion above, that once a Walsh-Hadamard had
operated on a qubit, it was unproductive to have target
qubits for Controlled-NOTs on the same qubit, only
controls - schemata for controls at this location should have
representatives that are highly fit. As far as scalability goes,
we demonstrated that it is possible, even by hand, to deduce
information about the general scalable solution to a
problem.

In addition, any one of these computers may be
generated with the operators we have defined, simply from
the fact that we have a mutation operator, which generates
completely random gates. Thus even if crossover prevented
us from getting certain computers (which it doesn’t, it
simply recombines ideas, losing no information), mutation
alone, although improbable, is able to generate any such
computer eventually.

6.3 Comparisons and Alternative Schemes

Two other schemes were considered during the course of
investigations, as well. The first was similar to the one
proposed here, in that a computer was a sequence of gates,
each gate could act on any qubit and could have parameters.
The idea is for the gates to be represented as a variable
width matrix, of height equal to the number of qubits. The
matrix is composed of gate structures, where a gate in row
i operates on qubit i of the qubit register (and of course,
required parameters would be contained within the gate
structure). Those gates that operate on more than one
category of qubit (ie. control and target), require another
version of the same gate type to appear in the same column,
where its row determines the qubit it operates on. In this
way, if a CNOT control-qubit gate is found at a,b() and a

CNOT target-qubit gate is found at c,b() then a CNOT
control qubit a , target c becomes part of the circuit at the
point b along the circuit. This scheme did show some
promise, however the complex crossover operators required
prevented its investigation.

Although non-evolutionary heuristics such as simulated
annealing are highly successful in many application areas,
they may run into problems here, due to the irregular fitness
landscape with many local minima and maxima.
Evolutionary schemes, on the other hand, are particularly
well suited to handling this type of problem, with their
typically robust, parallel methods of search.

7 Conclusion

We have presented a successful GP scheme for evolving
quantum circuits for problems of given behaviour. In doing
so, we have outlined the importance of recognising the
inherent structure in quantum circuits, thus enabling the
development of operators that can both generate any
quantum computer (over the given gate set), and focus on
parts of the computer that may be prone to similarities.

Traditional tree-based GP, as outlined in (Spector 1999)
was the other scheme considered. In Spector’s work with
the TBGP, one clear advantage and disadvantage become
apparent. Due to the functional nature of the tree
implementation, it is relatively easy to enable evolved
quantum circuits to be scalable, or at least make it easier.
That is, an evolved circuit not only works on n qubits but
also on n +1 qubits (in theory). This is because instead of
only having permutable constants for the qubit operands,
parameters, etc. there can also be constants such as the
number of qubits in the system - as all of these
real/complex/integral values are implemented as the terminal
set. So to evolve a scalable circuit, one would test each

By generating a relatively small number of quantum
circuits for maximal entanglement production, we have
learnt much about the general form for an arbitrarily sized
entanglement production circuit. Thus, we have recognised
the power of GP, even though only small systems were
used due to the inherent complexity of quantum
computation.

8 Future Work

Although a preliminary schemata analysis has been made
here, a more complete investigation would surely shed light

on our adaptive scheme, possibly further justifying the
choice of operators or suggesting alterations. Although we
did apply the scheme to a real-world quantum computing
problem it was small in gate number and type. It would be
interesting to see how it fares against harder problems such
as teleportation, Grover’s algorithm, etc. Cluster
computing could be employed to deal with the problems in
complexity (for large problem sizes). Finally, with the
framework laid by the OBSERVE gate, the implementation
of automatically defined gates, iteration, recursion, etc could
be investigated, as these ideas have proved invaluable in
many other GP applications.

Acknowledgments

I’d like to thank Dr. C. P. Williams (of JPL and Stanford
University) for suggesting a number of quantum computing
problems that lend themselves to solution by genetic
programming.

Bibliography

Koza, J. R. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. (1992),
Cambridge, MA: The MIT Press.

Marand, C. and Townsend, P. Quantum Key Distribution
Over Distances as Long as 30km. In Optics Letters, Vol.
20, No. 16, 15 August (1995), pp. 1695-1697.

Shor, P. Algorithms for Quantum Computation: Discrete
Logarithms and Factoring. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science
(1994), pp. 124-134.

Spector, L., Barnum, H., Bernstein, H. J. and Swamy N.
Quantum Computing Applications of Genetic
Programming. In Advances in Genetic Programming, Vol.
3, (1999), pp. 135-160.

Williams, C. P. and Clearwarter, S. H. 1998 Explorations
in Quantum Computing. Springer-Verlag New York, Inc.

Williams, C. P. and Gray, A. Automated Design of
Quantum Circuits. In Lecture Notes in Computer Science
Volume 1509 - issue dedicated to "Quantum Computing
and Quantum Communications", C. P. Williams (ed.)
(1999), Springer-Verlag .

