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Movement of soil and rocks in an unstable slope under gravita-
tional forces is an example of a complex system that is highly dynamic
in space and time. A typical failure in such systems is a landslide.
Fundamental studies of granular media failure combined with a com-
plex network analysis of radar monitoring data show that distinct
partitions emerge in the kinematic field in the early stages of the pre-
failure regime and these patterns yield clues to the ultimate location
of failure. In this study, we address this partitioning of constituent
units in complex systems by clustering the kinematic data, specifi-
cally, with a Gaussian mixture model. In addition, we assume that
neighboring units should move together. As a result, spatial infor-
mation is taken into account in our model so that spatial proximity
is retained. Our case study of a rockslide from high resolution radar
monitoring data shows that by incorporating spatial information, our
approach is more effective in revealing the dynamics of the system
and detecting the location of a potential landslide, compared to the
use of only the kinematics.

1. Introduction. Slope failures, such as landslides, are a class of geo-
logical hazards that involve the downslope movement of soil and rocks under
gravitational forces. The most common and effective technique for determin-
ing slope stability (i.e., the resistance of a slope to failure) is by monitoring
the small precursory movements of its surface prior to collapse. Modern early
warning systems on both natural and man-made slopes that seek to detect
these precursory movements have become key components of risk manage-
ment programs. However, although these monitors produce a large amount
of data, effective use of this data is still lagging behind the technology. For
example, slope stability radar (SSR) can remotely scan a surface and detect
movements with sub-millimeter precision at high spatial and temporal res-
olutions. Yet, typical use of this data is based on analysis of displacement
and displacement rates at just one, or a few, suspected locations.
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Slope failure is not instantaneous. There exists precursory failure regimes
preceding failure where patterns emerge that give clues to the precise lo-
cation of failure. Earlier study (Tordesillas, Zhou and Batterham, 2018)
suggests that such data can be organized as a time-evolving network in
the kinematic space and distinct patterns can be identified. Specifically, at
eventual failure, the slip region moves together in rigid body motion as it
falls, while the non-slip region maintains its stable flow, with a narrow shear
band that exhibits more chaotic behaviour. With this in mind, using real-
time measurements of the surface kinematics monitored on a spatial grid,
the detection of the location of a potential landslide points to discovering
these types of clustering patterns in the kinematics through space and time.
As opposed to examining the displacement data via a network structure
and partitioning in that space, we propose to cluster based on these surface
kinematic observations to form the basis for determining their behaviour.
Using clustering to reveal such behaviour can then potentially lead to early
prediction of the location of the eventual failure.

We examine landslide data from an open-pit mine, in which displacement
was measured as a univariate quantity. For this dataset, we anticipate the
non-slip region to have small movements, and the slip region to have larger
motion. We thus use a 2-component Gaussian mixture to represent this
phenomenon at each time step.

In addition to the kinematic data, spatial information is a readily easy
to access data source and can assist in guiding the identification of clusters.
The challenge here is to appropriately balance between kinematic similar-
ity and spatial proximity in the clustering process. To incorporate spatial
information into the clustering algorithm, we additionally model the spa-
tial distribution of the pixels within each of the clusters. Given that these
spatial distributions are complex, i.e., the boundaries of landslides can take
very complex shapes, we use an embedded Gaussian mixture model on the
2-dimensional spatial coordinates within each of the first-level clusters. The
reason for the mixture of Gaussians within each first-level cluster is to al-
low for the spatial regions to have more complex geometries, as a mixture
of Gaussians can yield any desired shape as the number of mixture com-
ponents within each first-level cluster increases. Such a mixture of mixture
configuration is beneficial to produce locally-smooth yet not over-simplified
clustering patterns in the spatial domain. In this work, we are interested in
the clustering pattern at each time stamp and how this varies over time. We
do anticipate that the clusters should vary relatively slowly with time, and
a direct approach to account for this without assuming a model for this be-
haviour is to use a sliding window over the past time points. An alternative
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way would be to fit a more complex evolution model over time. However, in
addition to having to choose a model assumption on the evolution, it would
also require using all of the data at once in order to fit the temporal model,
which can be time-consuming and infeasible. We show how combine kine-
matic and spatial data to build analytic tools for landslide monitoring, or
more broadly speaking, how to discover patterns in one feature space while
encouraging coherence in a separate domain.

We demonstrate our approach by providing a comprehensive characteri-
zation of patterns in ground motions from a high resolution (spatially and
temporally dense) dataset for a large, real-world cascading failure: a rock-
fall. Our approach resolves some of the outstanding challenges in the area
of landslide hazard forecasting and early prediction raised by Wasowski and
Bovenga (2014). As opposed to the prevailing approach of analyzing the
time course of data from one or a few selected locations, our analysis makes
full use of data from all monitored points (here there are 1803 spatial loca-
tions). In addition, compared to existing studies where the complex spatial
patterns are often over-looked, in our analysis we characterize the complex
spatial patterns by performing a clustering of the ground surface deforma-
tion feature space which encourages spatial coherence via a flexible spatial
distribution. Our analysis is able to capture the patterns of localized defor-
mations preceding failure, even though these are small and vary non-linearly
with space and time. Crucially, we were able to extract useful insights that
reliably predict the location of the yet-to-form failure and its complex dy-
namics in the lead up to the collapse. In particular, we were able to cap-
ture the interaction between multiple unstable zones (here, two zones), and
distinguish which zone is likely to collapse based on the spatio-temporal
persistence of its pattern. The presence of multiple ‘competing’ unstable
zones is a defining aspect of granular media failure in the precursory regime
(Tordesillas et al., 2013). In the field, this can lead to forecasting errors
with costly and at times fatal consequences: a collapse may be missed (false
negative) with attention focused elsewhere while a false positive incurs the
costs of a risk investigation. Thus tools that can deliver accurate knowledge
of where failure might occur, and distinguish it from other unstable zones,
would help geologists and geo-technical engineers provide more reliable and
effective risk assessment and prevention measures. Moreover, our proposed
method can also assist decision-makers in: establishing emergency prepared-
ness maps that indicate hazard zones, evacuation routes and safe shelters;
designing appropriate remedial measures (e.g. removal of material, water
drainage, adding retaining structures like barriers and walls in the hazard
area); and potentially optimising slope steepness for safety and economic
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performance in man-made slopes such as those in open-pit mines where our
studied landslide took place.

2. Related work. Statistical and machine learning approaches have a
long history in the landslide literature. One area drawing increasing atten-
tion from statisticians and machine learning practitioners is landslide suscep-
tibility modelling that aims to highlight potentially unstable slopes based
on linking characteristics of a particular slope with past landslide events
on similar slopes (Pourghasemi and Rahmati, 2018). Typically, a landslide
inventory is maintained and terrain attributes such as slope angle, eleva-
tion and profile curvature are collected from one or few monitoring sites
on the slope. Statistical and machine learning methods, such as generalized
linear models (GLM) (Brenning, 2005), support vector machines (SVM)
(Yao, Tham and Dai, 2008; Bui et al., 2012), random forests (RF) (Hong,
Pourghasemi and Pourtaghi, 2016) and neural networks (NN) (Pham et al.,
2017) are applied to fit the historical data and the landslide susceptibility
map can be generated as a classification problem. Compared to traditional
physical models like (Thanh and De Smedt, 2014), data driven approaches
are less expensive and more applicable to large scale areas (Pourghasemi
and Rahmati, 2018). More details and a comparison of approaches can be
found in (Goetz et al., 2015; Pourghasemi and Rahmati, 2018) and a recent
comprehensive review on this topic by Reichenbach et al. (2018). Our prob-
lem differs from a susceptibility study in that, rather than having location
characteristics and determining if that location may be similar to those that
had previous landslides, we focus on the next stage of management, i.e., per-
forming continuous monitoring of a previously identified susceptible site and
examining the smaller scale spatial resolution characteristics over time. As
a result, the aforementioned methods do not apply to this stage in the mon-
itoring process. Instead, we address the problem with a clustering approach
that reveals the dynamic changes of the system, given the high frequency
measurements generated by our large amount of monitoring stations.

Another relevant area is landslide forecasting where time series generated
by the monitoring stations are fitted and predicted, in order to attempt
to produce early warnings. Statistical and machine learning methods have
been applied in this task. Examples include support sector regression (SVR)
(Miao et al., 2018), classification and regression tree (CART) (Chen et al.,
2017), kernel extreme learning machine (KELM) (Zhou et al., 2016) and
NN (Neaupane and Achet, 2004; Chen and Zeng, 2013; Yao et al., 2015).
However, the major limitation of such numerical approaches is that sudden
events like landslides usually occur within a short period of time and may
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have significant deviations from the models fitted based on the historical
data. Consequently, they are more often used to detect when the observed
displacement exceeds the forecasted value, while failing to give long-term
forecasting of potential landslide (Zhou et al., 2016).

The closest study to our work is that of Tordesillas, Zhou and Batterham
(2018). Inspired by knowledge from fundamental studies of granular failure
showing that a distinct kinematic pattern is initiated early on, well before
ultimate failure (Tordesillas et al., 2013), they argued that the ultimate
failure pattern is encoded in the surface kinematics of a slope well before
collapse (weeks in advance) for a landslide, and sought to establish a reli-
able method for predicting the “strain-localization region”— the boundary
of the slip region. Specifically, k-nearest neighbor networks are generated
based on features derived from the displacement data at each time stamp.
Closeness centrality, a measurement that quantifies how close one node is
to all others, is calculated for each of the nodes. As reported in their study,
nodes with relatively high closeness centrality coincide with the shear band
that divides the slip and stable regions. As a result, monitoring this network
connectivity over time enabled the early detection of the location of the
landslide. However, unlike our proposed method, there is no use of spatial
information in that work, and the regions that are found are not necessarily
spatially contiguous, or enclosed. In addition, their approach only learns the
boundary between the slip and non-slip regions. In their study the identi-
fied boundary zone is sufficient to determine the location of the landslide,
but in other datasets like Mount Stromboli (Di Traglia et al., 2015; ?), the
landslide might be associated with more complex patterns, where the slip
regions is consisted of two zones with irregular shape and disconnected to
each other. In such cases, knowledge of only the boundary may not be suffi-
cient for detecting the landslide site and may even deliver misleading results.
To address this issue, we propose to directly detect where the landslide is
going to happen via a clustering technique which can encode complex spatial
patterns.

3. Statistical modelling.

3.1. sGMM: Spatially-aided Gaussian mixture model. LetX ∈ RM×D be
the feature data matrix comprising M instances with D features, S ∈ RM×2

be the spatial locations of these instances such that sm1 and sm2 represent
the x and y coordinates of m-th data point, respectively. We model the fea-
ture data by a K-component Gaussian mixture model (GMM) (Fraley and
Raftery, 2002) with parameters Θf = {α1, . . . , αK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK}
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as:

(3.1) p(xm|Θf ) =

K∑
k=1

αkϕ(xm|µk,Σk),

where ϕ(xm|µk,Σk) is the Gaussian density with mean vector µk and co-
variance matrix Σk, and αk is the mixing coefficient of the k-th component.
The mixture weights are non-negative and sum up to 1.

Assuming g is a latent variable such that gm = k stands for xm arising
from the k-th component, we have

p(gm = k) = αk,

(xm|gm = k) ∼ N (µk,Σk).
(3.2)

Given that we anticipate complex spatial patterns in our data (for ex-
ample, see Fig. 4b), direct modeling of spatial coordinates with a mixture
model would enforce inappropriate elliptical spatial distributions per cluster.
Instead, we would like to model the spatial distribution within each cluster
with a more flexible model, allowing for much more complex geometries. In-
spired by Reich and Bondell (2011), we model the spatial distribution within
each cluster as a nested GMM, with L components.

In this way, spatial information aids in the cluster allocation in that the
number of sub-components, L will control the role of the spatial information
in cluster allocation. The larger the L, the less weight is placed on the spatial
information, while as L → 1 yields a restrictive spatial structure that is
forced to be elliptical within each cluster.

Formally we have

(3.3) (sm|gm = k) ∼
L∑
l=1

βklN (νkl,Λkl),

where 0 ≤ βkl ≤ 1 is the mixing coefficient, νkl is the mean vector, Λkl is the
covariance matrix of the l-th sub-component of the k-th cluster, respectively,
and

∑L
l=1 βkl = 1.

Given the clustering assignment gm, the distribution of the features are
assumed to be homogeneous across the spatial locations within the clus-
ter, i.e., (xm ⊥ sm)|gm and hence the density of the m-th instance can be
factored as

(3.4) p(xm, sm|gm) = p(xm|gm)p(sm|gm),
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resulting in the following observed data log-likelihood

`(Θ|X,S) =
∑
g

p(gm)p(xm, sm|gm)

=

M∑
m=1

log

(
K∑
k=1

αkϕ(xm|µk,Σk)

L∑
l=1

βklϕ(sm|νkl,Λkl)

)
.

(3.5)

3.2. EM algorithm for sGMM. Directly maximizing (3.5) is difficult.
Instead the widely applied technique of Expectation-Maximization (EM)
(Dempster, Laird and Rubin, 1977) is preferred for parameter estimation.
Here we introduce the EM algorithm for maximizing the log-likelihood of
the sGMM.

Since the spatial distribution within a cluster is represented by its own
GMM, we introduce a latent variable h for indicating this sub-component
membership conditional on the cluster assignment, i.e., (hm = l)|(gm = k)
means that the m-th instance is located in the l-th sub-region of the k-th
cluster. As a result, (3.3) can be represented as

p(hm|gm) = βkl,

(sm|gm, hm) ∼ N (νkl,Λkl).
(3.6)

Given the feature vector and the location of the m-th instance, let r
(t)
mkl

be the posterior probability of this instance belonging to the k-th cluster
and the l-th sub-component within it at time t, we have

r
(t)
mkl = p(gm, hm|xm, sm,Θ

(t)) =
p(xm, sm, gm, hm|Θ(t))∑
g,h p(xm, sm, gm, hm|Θ(t))

=
p(xm|gm, hm,Θ(t))p(sm|gm, hm,Θ(t))p(hm|gm,Θ(t))p(gm|Θ(t))∑

g,h p(xm, sm, gm, hm|Θ(t))

=
α
(t)
k ϕ(xm|µ(t)

k ,Σ
(t)
k )β

(t)
kl ϕ(sm|ν(t)kl ,Λ

(t)
kl )∑K

k=1

∑L
l=1 α

(t)
k ϕ(xm|µ(t)

k ,Σ
(t)
k )β

(t)
kl ϕ(sm|ν(t)kl ,Λ

(t)
kl )

.

(3.7)
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In the E-step, Q(Θ,Θ(t)) is calculated as

Q(Θ,Θ(t)) = Eg,h|X,S,Θ(t) log p(X,S, g,h|Θ)

=
∑
g,h

p(g,h|X,S,Θ(t))
M∑

m=1

log (p(xm, sm, gm, hm|Θ))

=
M∑

m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logαk +

M∑
m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logϕ(xm|µk,Σk)

+
M∑

m=1

K∑
k=1

L∑
l=1

r
(t)
mkl log βkl +

M∑
m=1

K∑
k=1

L∑
l=1

r
(t)
mkl logϕ(sm|νkl,Λkl).

(3.8)

In the M-step, the following closed-form updates can then be readily ob-
tained as

α
(t+1)
k =

1

M

M∑
m=1

L∑
l=1

r
(t)
mkl,

µ
(t+1)
k =

∑M
m=1

∑L
l=1 r

(t)
mklxm∑M

m=1

∑L
l=1 r

(t)
mkl

,

Σ
(t+1)
k =

∑M
m=1

∑L
l=1 r

(t)
mkl(xm − µ(t+1)

k )(xm − µ(t+1)
k )>∑M

m=1

∑L
l=1 r

(t)
mkl

,

β
(t+1)
kl =

∑M
m=1 r

(t)
mkl∑M

m=1

∑L
l=1 r

(t)
mkl

,

ν
(t+1)
kl =

∑M
m=1 r

(t)
mklsm∑M

m=1 r
(t)
mkl

,

Λ
(t+1)
kl =

∑M
m=1 r

(t)
mkl(sm − ν

(t+1)
kl )(sm − ν(t+1)

kl )>∑M
m=1 r

(t)
mkl

.

(3.9)

4. Simulation Study. In this section, we perform experiments on a
synthetic dataset, in order to illustrate the merits of the proposed sGMM
algorithm, compared to two baseline methods: K-Means and GMM.

4.1. Data. The simulated data consists of 400 data points, which are
evenly divided into two clusters: C1 and C2. Each point has a D-dimensional
feature vector (we set D = 2 for ease of visualization) and another 2-
dimensional vector as its spatial coordinates. Feature values of points in C1
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Fig 1: Ground truth clustering pattern in the feature space

and C2 are sampled from N (µ,Σ) and N (ν,Σ), where µ = [0, 0], ν = [1, 1],

and Σ =

[
1 0
0 1

]
, respectively. The visualization of the generated feature

data can be found in Fig. 1. The clustering pattern in the feature space
is highly overlapped, with more than 20% of data points are not correctly
assigned by baselines to their actual clusters if only this data is used as
input. The spatial coordinates of data points are uniformly distributed in a
2× 2 squared space and three different spatial patterns are simulated in our
experiment: SP1, SP2 and SP3, as shown in the second column of Table 1.

4.2. Settings. Two baseline methods, K-Means and GMM are used and
each of them has two variants, indicated by the (X) and (X+S) suffices fol-
lowed by the algorithm name. K-Means (X) and GMM (X) takes only the
feature data as input, whereas the feature and spatial data are concatenated
and fed to K-Means (X+S) and GMM (X+S). The proposed sGMM algo-
rithm uses both the feature and spatial data. In addition, it is worth noting
that when diagonal covariance is used, GMM (X+S) is equivalent to sGMM
with just one spatial component.

The number of clusters is set to 2 for all algorithms. For our proposed
method, an additional parameter, the number of spatial components for each
cluster, L, is selected from 1 to 4 via Bayesian Information Criterion (BIC)
(Schwarz et al., 1978) as

BIC = `(Θ|X,S) + |Θ| log(M),

where `(Θ|X,S) is the log likelihood, |Θ| is the number of parameters,
and M is the total number of observations, respectively. In addition, to
quantify the quality of prediction produced by each algorithm, we measure
the similarity between the produced clustering and the ground truth by
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Table 1
Visualization of clustering results of different methods in the spatial space

Spatial
pattern

K-Means
(X)

K-Means
(X+S)

GMM
(X)

GMM
(X+S) * sGMM

SP1

SP2

SP3

* GMM (X+S) is equivalent to sGMM with just one spatial component (L = 1)
when diagonal covariance is used.

SP1 SP2 SP3
0

0.2

0.4

0.6

0.8

1

N
M

I

K-Means(X)

K-Means(X+S)

GMM(X)

GMM(X+S)

sGMM

Fig 2: Clustering quality com-
pared to the ground truth (the
higher the better)

SP1 SP2 SP3
4300

4400

4500

4600

4700
B

IC
L=1 L=2 L=3 L=4

Fig 3: BIC of sGMM with differ-
ent number of spatial components
(the lower the better)

Normalized Mutual Information (NMI) (Vinh, Epps and Bailey, 2010) as

NMI(Ỹ , Y ) =
I(Ỹ ;Y )√
H(Ỹ )H(Y )

where Ỹ is the prediction, Y is the ground truth, I(Ỹ ;Y ) is the mutual
information between Ỹ and Y , and H(·) is the entropy of the corresponding
clustering partition.

4.3. Results and discussion. We visualize the clustering assignment pro-
duced by each algorithm in the spatial domain, as shown in Table 1, along
side the of clustering quality results in Fig. 2. The reported sGMM results
(column 6 in Table 1) are chosen by the BIC results presented in Fig. 3.
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As shown in Fig. 2, baselines that use only the feature data (K-Means
(X) and GMM (X) ), demonstrate poor performance, with a NMI score
under 0.3. Generally, incorporating spatial information helps the improve-
ment in clustering quality. For example, for the trivial case like SP1, GMM
(X+S) only mistakenly clusters a few observations and reaches a NMI score
above 0.8 by simply concatenating feature and spatial data. However, this
concatenating strategy can easily fail for the slightly more complex cases.
Only minor performance boost can be found in SP3 for K-Means (X+S)
and GMM (X+S) and the NMI score of GMM (X+S) even decreases for
SP2, compared to the results of using solely the feature data.

In contrast, by modelling the spatial coordinates of observations with
an embedded mixture model, significant performance improvement can be
found in our method. Compared to baselines, the clustering patterns pro-
duced by sGMM are less noisy and show much better similarity to the ground
truth. In addition, it is clear that our model can easily accommodate differ-
ent spatial patterns by simply choosing different number of spatial compo-
nents, as demonstrated in Fig. 3, where 1, 2, 3 spatial components are used
for SP1, SP2 and SP3, respectively. Overall, it is clear to see the proposed
method is a better way of using spatial information to aid the clustering
problem, especially when data are hard to distinguish in the feature space
while complex patterns are presented in the spatial domain.

5. Application to rock slope data.

5.1. Rock slope dataset. Slope failures are a class of geological hazards
that involve the downslope movement of soil and rocks under gravitational
forces. The most common and effective technique for determining slope sta-
bility (i.e., the resistance of a slope to failure) is by monitoring the small
precursory movements of its surface prior to collapse. Various radar inter-
ferometry systems have been developed for this purpose. One example is the
slope stability radar (SSR). This monitoring technology can remotely scan a
surface and detect movements with sub-millimeter precision at high spatial
and temporal resolutions. Readers are referred to (Dick et al., 2014; Pienaar
and Anton, 2013; Casagli et al., 2010) for details on: (a) the monitoring
technology, (b) measurement methods and other data generated using SSR,
as well as (c) current best practice for prediction of slope failure from these
datasets.

In this case study, we analyze a rock slope dataset, on which SSR was
deployed to monitor the rock slope shown in Fig. 4a. Spatio-temporal raster
data on movement were gathered for 1803 locations on the slope surface:
a time series of the cumulative surface displacement along the line-of-sight



12 S. ZHOU ET AL.

(a) Monitored site

0 50 100 150 200
0

20

40
t=2

0 50 100 150 200
0

20

40
t=1200

0 50 100 150 200
0

20

40
t=2400

0 50 100 150 200
0

20

40
t=3600

0 100 200 300 400 500 600 700 800 900

(b) Cumulative displacement heatmaps of the rock slope
at different time points

(c) Average cumulative displacement over time (subplots are dis-
placement distributions at different time stamps)

(d) Average velocity over time (subplots are velocity distributions
at different time stamps)

Fig 4: Rock slope dataset
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from the stationary (ground-based) monitoring station to each observed lo-
cation on the surface. This displacement is measured relative to a reference
baseline observation and is updated at every 6 minute interval over a period
of three weeks: 10:07 May 31 to 23:55 June 21. A collapse occurred to the
west in the early afternoon of June 15. Specifically, accelerating motions
were recorded along the western side of the slope reaching peak velocity
of 74.8 mm/h at location (x, y) = (77m, 4m) at 1:10 PM June 15, which
represents time point 3567 in this data. This coincided in time with the
global average velocity reaching its peak of 33.6 mm/h (Fig. 4d). Smaller
surface movements were recorded in the south-eastern corner of the slope
from June 1, but these stabilised on June 14. Two distinct sub-zones of
the slope emerged in the failure. Large cumulative downward displacements
characterize the rockslide region to the west, whilst relatively small move-
ments developed in the stable region to the east.

5.2. Settings. We apply sGMM on the first 3600 time stamps (10:07 May
31 to 16:25 June 15) of the data in a sliding window fashion. That is, given
a particular window size W , at each time stamp, a small snapshot of length
W (taken backward from current time) is extracted from the displacement
time series and clustered by sGMM, with the help of positional data of each
radar monitor. Thus, 3600 clusterings from sGMM are produced. In order to
demonstrate the value of incorporating spatial information in the clustering
process, we use K-Means and GMM, which use only the displacement of the
given time range, as baselines.

NMI is used to quantify the quality of the produced clustering at each
time stamp. Since no label information is presented in this data, we assume
that theK-Means clustering of the displacement data at the final time stamp
is the ground truth. This is a reasonable assumption, since at the last time
stamp the rockslide has occurred and the groups (functional units) have
become clearly defined.

In terms of parameter settings, the number of clusters is set to 2 for all
algorithms, where one cluster indicates the active region and the other refers
to the relative stable sub-zone. The number of iterations is set to 100 for
the EM steps. Other parameters are selected via a grid search with window
size, W , chosen from 1 (6 minutes), 5 (30 minutes) and 10 (1 hour), and the
number of spatial components each cluster can have, L, is selected among 1,
2, 4, 8, and 16. The best parameters are chosen by the averaged BIC across
all time steps.

In addition, for GMM and sGMM, we quantify the model uncertainty as
the posterior probability for each point to be allocated to the cluster with
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relatively higher mean displacement, in order to provide additional infor-
mation regarding the certainty of the regions, i.e. answering the question
of whether a particular point will belong to the portion that collapses, or
to the portion that does not collapse. The other model parameters such as
the mixture component means and variances are not themselves of inter-
est, but rather a way to obtain the clustering patterns. With this target in
mind, we note that these posterior probabilities are functions of the param-
eters in the model, and hence will have uncertainty associated with them as
well. Specifically, we perform a weighted likelihood bootstrap as suggested
for GMM (Newton and Raftery, 1994; O’Hagan et al., 2019). We use 1000
bootstrap samples at each time point. Based on these bootstrap samples, we
then quantify the uncertainty in the posterior probability for each location
to belong to the active region and demonstrate via plots (Fig. 8) how the
uncertainty shows up. We construct a 95% confidence interval for each prob-
ability and our plots now show three sets of locations: those points whose
confidence interval does not contain 0.5, which allows us to classify them to
either the active or stable clusters (depending on whether they are above or
below 0.5), and those points whose interval does contain 0.5. These are the
points that we are uncertain as to which cluster they would belong, and we
highlight these points separately.

The experiments are conducted on Spartan (Lafayette and Wiebelt, 2017),
a research platform with multiple computing nodes, each having 12 CPU
cores and 251 GB RAM. Due to the fact that Spartan is a highly utilized
system, we limit the computing resources for each algorithm-dataset pair
to 2 CPU cores, 16 GB memory and 12-hour maximum running time. The
whole experiment is implemented in MATLAB1 and the code of GMM are
adapted from Gebru et al. (2016) .

5.3. Results and discussion.

5.3.1. Overall performance of sGMM. According to Fig. 5a, the best pa-
rameter to fit this rock slope data is by using a time window with single time
step and 4 spatial components for each cluster. In terms of running time,
as shown in Fig. 5b, sGMM often takes under a second to cluster one time
window’s data, and generally, this goes up linearly with the increase of the
number of spatial components. Considering the 6 minutes time interval in
our data and usually even lower data generating frequency in landslide mon-
itoring applications, such time consumption is insignificant and acceptable.

1The MATLAB implementation of sGMM is available upon on request.
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dicate better similarity to the ground truth

5.3.2. Comparison to K-Means. Comparison between sGMM and K-
Means can be found in Figs. 6 and 7. We see that the major advantage of
using spatial information in addition to kinematic features in clustering is
that it allows sGMM to reveal more detail about the underlying dynamic
changes of the system. Specifically, as shown in Fig. 7, a key difference be-
tween the clusterings found by sGMM and K-Means is that the small region
on the southeast side shows a ‘come-and-go’ pattern in sGMM (i.e., it con-
stantly joins and leaves the red cluster between time 700 to 2400 in Fig. 7a).
Unlike the ‘co-activate’ pattern discovered by K-Means, sGMM detects that
the ultimate failure is the outcome of a continuous competition between the
west and southeast regions, with the western region ultimately winning the
competition (being responsible for the failure). A similar type of competition
phenomenon has been observed in previous small-scale laboratory studies,
which observed that multiple strain localization regions initially compete
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(a) sGMM

(b) K-Means

Fig 7: Clustering patterns at a sequence of time points. Results are from
time 100 to 3600, with step size as 100, reading from left to right, top to
bottom. Red cluster is the one with higher average displacement
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with each other, with the winning region developing into the final shear
band (see Vitone et al., 2013; Le Bouil et al., 2014; Karimi and Barrat,
2018). By incorporating spatial information into clustering, our method is
able to detect the competition between the intermittent failure and winning
failure regions in this large-scale real-world example. With this in mind, it
is desirable to ignore the distraction of the southeast site, treating it as a
false alarm occurring at an earlier stage, while focusing on the region that
does actually collapse, the western wall, which is persistently active.

In fact, the incorporation of the spatial locality in our sGMM approach
is able to automatically remove the southeast region from the active cluster
400 time stamps (∼ 40 hours, ∼ 5 days prior to the eventually landslide) in
advance, compared to K-Means, which consistently learns the arch that is
bridging the west and southeast wall from time 700 to 2800 (∼ 3 days before
the eventually landslide). As a result, sGMM is more effective in terms of
identifying the failure region over time (as shown in Fig. 6 sGMM generates
more accurate results that are similar to the final pattern formulated at the
landsliding time). An additional 2 days of warning on the landslide location
is a significant gain and has the potential for a major impact for public
safety.

Lastly, as an additional benefit of optimizing spatial locality, sGMM pro-
duces more spatially coherent clustering partitions than K-Means. This ef-
fect is especially noticeable in the early phase of the monitoring procedure.
For example, clustering partitions produced by K-Means is more noisy than
those of sGMM in the first 300 time stamps, where more isolated sensors
can be found next to the boundary between two clusters. This appears to
happen because in the early stages, the difference in the displacement data
among radar sensors is subtle and highly concentrated within a small value
range, as presented in Fig. 4c. Thus, if purely using the displacement data
with K-Means, two sensors with only slightly different displacement records
may be assigned to different clusters. In contrast, the clustering partitions
produced by sGMM are generally smoother compared to K-Means since
spatial information has been incorporated in the clustering process, which is
more interpretable and meaningful for understanding the evaluation of the
rock slope.

5.3.3. Comparison to GMM. We report the posterior probability of a
monitor being assigned to the active cluster by GMM and sGMM in Fig. 8.
The uncertain monitors found via the bootstrap test are also visualized by
the black points. Additionally, the change of NMI scores of GMM can be
found in Fig. 6.
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(a) sGMM

(b) GMM

Fig 8: Posterior probability of being in the active region. The darker the
red, the closer the probability to 1. Black points are monitors that have 0.5
within its 95% confidence interval of the posterior
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As can be seen in Figs. 6 and 8b, the clustering assignment of GMM is
quite similar to K-Means in the first 1500 time stamps, where a large number
of noisy points can be found in the early phase and a gradual development
of the active region towards the east wall is presented. However, unlike K-
Means that predicts the whole east wall as a part of slip region until time
2900, GMM shows a similar ‘come-and-go’ pattern as our method inside
the east wall and eliminates the distraction from this site 100 time stamps
earlier than K-Means.

Compared to our proposed sGMM algorithm, the ‘come-and-go’ pattern
illustrated by GMM is less obvious and less frequent. One can easily see
from Fig. 8a that there are periodical expansion of uncertain monitors to
the east wall from time 1600 to 2400 in sGMM. This means that by taking
spatial information into consideration, it is less confident to say that the east
wall is of high likelihood to be a part of the active region, thus, the easier
and earlier to narrow down the predicted active region to the the actual
rockslide site. In contrast, the uncertain monitors found by GMM locate
mainly in the boundary of the whole west and east sites that have relatively
higher displacement and it shows less clear and frequent signals in order to
eliminate the east wall as earlier as sGMM can.

6. Conclusion. In this paper we study the failure detection problem
in complex systems and propose a clustering algorithm that incorporates
spatial information into a Gaussian mixture model. A case study on a rock-
slide monitoring dataset demonstrates that our model not only improves the
spatial coherence of the clustering, but also effectively identifies the correct
failure region earlier, as much as 2 days in advance, compared to the base-
line. More importantly, much richer patterns are discovered by the proposed
model, such as the presence of an intermittent competing region of failure.
Knowledge of such regions opens the door to deeper understanding of the
dynamic of failure in complex systems.

More generally, the clustering method proposed in this paper is a unified
approach for discovering patterns in one feature space while encouraging
coherence in a separate feature space. This could potentially be applied to
many real-world problems other than the rockfall forecasting we examine in
our case study. Examples include: 1) multi-view problems in cybersecurity,
where one feature space reflects node behavior (patterns of API access, or
user application profiles) and the second space represents inter-node commu-
nication such as connections, endowed with statistics on port and protocols
used; 2) traffic monitoring systems where the spatial proximity in the road
network should be taken into account when clustering sensors based on the
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traffic volume; 3) recommender systems that partition users according to
both their rating activities and their demographic information; and 4) so-
cial networks where communities or user groups are detected based on not
only the linkage information among users, but also their features such as
age, occupation, and personal interest.

In terms of future work, one possible extension to our existing model is
to incorporate domain knowledge as prior distributions on the parameters
in a Bayesian modelling framework, similar to (Reich and Bondell, 2011).
However, it is not entirely clear how best to incorporate this prior informa-
tion on these model parameters which would represent things such as the
locations of the spatial clusters. In some sense this would then attempt to
use the prior information to place a prior on the location of the rockslide,
which we seek to find in the data-driven approach. Given that we have 1803
sensor locations, within our framework, the data tends to identify the loca-
tion well (as our results show), so a prior distribution on the location may
not provide much additional information in this case. We also note that, in
our example, we only have measurements of the kinematic data. Without
additional measurements regarding characteristics of the slope, the experts
are not typically able to give reliable information about the location of the
eventual rockslide. In other cases, there may perhaps be information about
other characteristics of the slope, such as moisture readings, terrain den-
sity, etc. With that additional information, it would be potentially useful to
include these readings as prior information on the suspected locations. For
example, the spatial centers could be modelled via a hierarchical regression
using these other characteristics as covariates.
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