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Abstract

We present new expected risk bounds for binary and multiclass prediction, and
resolve several recent conjectures on sample compressibility due to Kuzmin and
Warmuth. By exploiting the combinatorial structure of concept class F , Haussler
et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy.
The key step in their proof is a d = VC(F) bound on the graph density of a sub-
graph of the hypercube—one-inclusion graph. The first main result of this paper is
a density bound of n

(

n−1
≤d−1

)

/ ( n
≤d ) < d, which positively resolves a conjecture of

Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and
also leads to an improved one-inclusion mistake bound. The proof uses a new form
of VC-invariant shifting and a group-theoretic symmetrization. Our second main
result is an algebraic topological property of maximum classes of VC-dimension d
as being d-contractible simplicial complexes, extending the well-known characteriza-
tion that d = 1 maximum classes are trees. We negatively resolve a minimum degree
conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of cor-
rectness for Peeling—that every class has one-inclusion minimum degree at most
its VC-dimension. Our final main result is a k-class analogue of the d/n mistake
bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-
inclusion strategy by its natural hypergraph generalization. This result improves on
known PAC-based expected risk bounds by a factor of O(log n) and is shown to be
optimal up to an O(log k) factor. The combinatorial technique of shifting takes a
central role in understanding the one-inclusion (hyper)graph and is a running theme
throughout.
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1 Introduction

In [13,12] Haussler, Littlestone and Warmuth proposed the one-inclusion pre-
diction strategy as a natural approach to the prediction (or mistake-driven)
model of learning, in which a prediction strategy maps a training sample and
test point to a test prediction with hopefully guaranteed low probability of
erring. The significance of their contribution was two-fold. On the one hand
the derived VC(F)/n upper-bound on the worst-case expected risk of the
one-inclusion strategy learning from F ⊆ {0, 1}X improved on the previous-
best bound for consistent learners by an order of logn. This was achieved by
taking the combinatorial structure of the underlying F into account—which
had not been done in previous work—in order to break ties between hypothe-
ses consistent with the training set but offering contradictory predictions on
a given test point. At the same time Haussler [12] introduced the idea of
shifting subsets of the n-cube down around the origin—an idea previously de-
veloped in combinatorics—as a powerful tool for learning-theoretic results. In
particular, shifting admitted deeply insightful proofs of Sauer’s Lemma and
a VC-dimension bound on the density of the one-inclusion graph—the key
result needed for the one-inclusion strategy’s expected risk bound.

Recently shifting has impacted work towards the sample compressibility con-
jecture of [19], in [17]. In order to k-compress a concept class C, one must be
able to compress any sample s consistent with C to a subsample of length at
most k and then be able to map such a compressed-set to some s-consistent
concept (not necessarily belonging to C). Given a k-compression scheme for
bounded k, Littlestone and Warmuth demonstrated a proof for the learnability
of C that is simpler than proofs based on finite VC-dimension. The necessity
of having a bounded compression scheme for learnability motivated the com-
pression conjecture, which states that every concept class C of VC-dimension
d has a d (or order d)-compression scheme.

This paper continues the study of the one-inclusion graph—the natural graph
structure induced by a subset of the n-cube—and its related prediction strat-
egy under the lens of shifting. After the necessary background including the
prediction model of learning, PAC-based expected risk bounds, the one-
inclusion prediction strategy and sample compressibility summarized in Sec-
tion 2, we develop the technique of shatter-invariant shifting in Section 3.1.
While a subset’s VC-dimension cannot be increased by Haussler’s shifting,
shatter-invariant shifting guarantees a finite sequence of shifts to a fixed-point
under which the shattering of a chosen set remains invariant, thus preserving
VC-dimension throughout.

∗ Corresponding author.
Email address: benr@cs.berkeley.edu (Benjamin I. P. Rubinstein).
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In Section 3.2 we apply a group-theoretic symmetrization to tighten the mis-
take bound—the worst-case expected risk bound—of the deterministic one-
inclusion strategy from d/n to ⌈Dd

n⌉/n, where Dd
n < d for all n, d; the bound

for the randomized one-inclusion strategy is improved to Dd
n/n. The derived

Dd
n density bound positively resolves a conjecture of Kuzmin and Warmuth

which was suggested as a step towards a correctness proof of the Peeling un-
labeled compression scheme [17]. In Section 5 we provide counter-examples
to another conjecture of Kuzmin and Warmuth which is the second step of
the conjectured correctness proof; Section 6 discusses the consequences of our
combinatorial results for sample compression. Notably, a proof of correctness
for Peeling would imply a result on the inembeddability of maximal classes
into certain maximum classes.

Section 4 explores characterizations and properties of one-inclusion graphs and
maximum/maximal concept classes. We extend the work on forbidden labels
of Floyd [8] slightly to cubical characterizations of both maximum and non-
maximum maximal classes on finite domains. Such cubical characterizations
are central to our results on prediction and sample compression. A colorability
characterization of one-inclusion-isomorphic graphs, extending previous work
on characterizing graphs embeddable in the n-cube [7,15,14], is provided. This
characterization can be used to visualize high-dimensional graphs, and justifies
referring to an edge’s parallel dimension as its “color”. Finally, we extend the
classic result of Dudley [5] that a maximum concept class of VC-dimension 1 is
a tree: we show that maximum classes of VC-dimension d on finite domains are
in fact d-contractible simplicial complexes, the natural generalization of trees
in algebraic topology. Our recent results in [22] relate directly to this topologi-
cal property. In particular, 1-maximum classes can be peeled by observing that
such classes are trees; in order to peel d-maximum classes, a reasonable ap-
proach is to generalize this tree property to higher dimensions—peeling graphs
is intuitively similar to contracting complexes in algebraic topology. In [22] we
show that contractibility is insufficient for peeling maximum classes, while
proving that maximum classes represented by simple Euclidean hyperplane
arrangements can be peeled by sweeping a generic hyperplane across the cor-
responding arrangement, resolving the first part of [17, Conjecture 1]. We also
extend this result to simple hyperplane arrangements in Hyperbolic geometry,
which we show to be dual to a set of maximum classes that properly contains
the set of classes induced by Euclidean arrangements.

Finally we generalize the prediction model, the one-inclusion strategy and
its bounds from binary to k-class learning in Section 7. To date, the best
bound on expected risk in this case is O(α log (1/α)) for α = ΨG-dim (F) /n,
where ΨG-dim (F) denotes the graph dimension of F . We derive a bound
of ΨP-dim (F) /n, which improves the dependence on n by a log factor. Here,
ΨP-dim (F) is the Pollard dimension of F . We show that this bound is at most
an O(log k) factor from optimal. Thus, as in the binary case, exploiting class
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structure enables significantly better bounds on expected risk for multiclass
prediction.

A preliminary version of this paper appeared as [21].

2 Definitions and background

We begin with some notation. Sets/random variables, scalars and vectors will
be written in uppercase, lowercase and bolded typeface, respectively, as in
C, x,v. The set of natural numbers N is defined as the positive integers. We
define

(

n
≤r

)

=
∑r
i=0

(

n
i

)

to be the number of subsets of size at most r in a set

of cardinality n. Let [n] = {1, . . . , n} and Sn be the set of permutations on [n].
We write the density of graph G = (V,E) as dens (G) = |E|/|V | and graph
minimum degree as δ (G). The bit-wise exclusive-OR of strings u,v ∈ {0, 1}n

will be written as u xor v. 1 [A] denotes the indicator function of A.

2.1 The prediction model of learning

We begin with the basic setup of [13]. The set X is the domain and F ⊆ {0, 1}X

is a concept class on X . For notational convenience we write sam (x, f) =
((x1, f(x1)) , . . . , (xn, f(xn))) for x ∈ X n, f ∈ F . A prediction strategy is a
mapping of the form Q :

⋃

n>1 (X × {0, 1})n−1 ×X → {0, 1}, taking a labeled
sample and test point to a prediction of the point’s label.

Definition 1 (Mistake bounds) The prediction model of learning is con-
cerned with the following scenario. Given full knowledge of strategy Q, an
adversary picks a distribution P on X and concept f ∈ F so as to maximize

the probability of {Q (sam (X1, . . . , Xn−1, f) , Xn) 6= f(Xn)} where Xi
i.i.d.
∼ P .

Thus the measure of performance is the worst-case expected risk

M̂Q,F(n) = sup
f∈F

sup
P

EX∼Pn [1 [Q (sam ((X1, . . . , Xn−1), f) , Xn) 6= f(Xn)]] .

A mistake bound for Q with respect to F is an upper-bound on M̂Q,F .

While Valiant’s Probably Approximately Correct (PAC) model shows that
Pr (E [1 [Q(sam ((X1, . . . , Xn−1), f) , Xn) 6= f(Xn)] | X1, . . . , Xn−1] > ǫ) is small
(risk is concentrated close to 0) the prediction model focuses on the size of
E [E [1 [Q(sam ((X1, . . . , Xn−1), f) , Xn) 6= f(Xn)] | X1, . . . , Xn−1]] (that the
expected risk is close to 0). The following allows us to derive mistake-bounds
by bounding a worst-case average [13, Corollary 2.1].
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Lemma 2 (Permutation mistake bounds) For any n > 1, concept class
F and prediction strategy Q,

M̂Q,F(n)

≤ sup
f∈F

sup
x∈Xn

1

n!

∑

g∈Sn

1
[

Q
(

sam
((

xg(1), . . . , xg(n−1)

)

, f
)

, xg(n)

)

6= f
(

xg(n)

)]

=
ˆ̂
MQ,F(n) .

A permutation mistake bound for Q with respect to F is an upper-bound on
ˆ̂
MQ,F .

2.2 The capacity of function classes contained in {0, . . . , k}X

For a finite set Y , we denote by Πx (F) = {(f(x1), . . . , f(xn)) | f ∈ F} the
projection of F ⊆ YX on x ∈ X n—the equivalence classes of functions induced
by labelings of x.

Definition 3 The Vapnik-Chervonenkis dimension of concept class F is de-
fined as VC(F) = sup {n | ∃x ∈ X n,Πx (F) = {0, 1}n}. Any x satisfying
{0, 1}|x| = Πx (F) is said to be shattered by F .

Lemma 4 (Sauer’s Lemma [23]) For any n ∈ N and V ⊆ {0, 1}n, |V | ≤
(

n
≤VC(V )

)

. A subset V satisfying ∀c ∈ {0, 1}n,VC(V ∪ {c}) > VC(V ) is known
as maximal; if furthermore V meets Sauer’s Lemma with equality then it is
called maximum.

It is well-known that the VC-dimension is an inappropriate measure of ca-
pacity when |Y| > 2. The following unifying framework of class capacities for
|Y| <∞ is due to [2].

Definition 5 (Translation framework for multiclass capacity) Let
k ∈ N, F ⊆ {0, . . . , k}X and Ψ be a family of mappings ψ : {0, . . . , k} →
{0, 1, ⋆} called translations. For x ∈ X n, v ∈ Πx (F) ⊆ {0, . . . , k}n and
ψ ∈ Ψn we write ψ(v) = (ψ1(v1), . . . , ψn(vn)) and ψ(Πx (F)) = {ψ(v) : v ∈
Πx (F)}. We say that x ∈ X n is Ψ-shattered by F if there exists a ψ ∈ Ψn

such that {0, 1}n ⊆ ψ(Πx (F)). The Ψ-dimension of F is defined by

Ψ-dim (F)= sup{n | ∃x ∈ X n, ψ ∈ Ψn s.t. {0, 1}n ⊆ ψ(Πx (F))} .

Example 6 The following translation families and corresponding dimensions
are used in this paper:
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(a) The Pollard pseudo-dimension ΨP-dim (V ) is induced by the family ΨP =
{ψP,i : i ∈ [k]} where ψP,i(a) = 1 [a < i].

(b) The Graph dimension ΨG-dim (V ) is induced by the family ΨG = {ψG,i :
i ∈ {0, . . . , k}} where ψG,i(a) = 1 [a = i].

(c) The Natarajan dimension ΨN-dim (V ) is induced by the family ΨN =
{ψN,i,j : i, j ∈ {0, . . . , k}, i 6= j} where

ψN,i,j(a)=















1 , a = i ,

0 , a = j ,

⋆ , a /∈ {i, j} .

Finite Ψ-dimension, for certain ‘distinguisher’ translation families, character-
izes multiclass learnability [2, Theorem 16]. The Ψs in Example 6 are all
distinguishers.

2.3 Existing expected risk bounds for consistent multiclass learners

The following is a precise statement of the PAC-based multiclass expected risk
bound referenced in Section 1. The statement and its proof both follow [13,
Theorem 4.1] closely.

Theorem 7 Let F ,H ⊆ {0, . . . , k}X be arbitrary with d = ΨG-dim (H) ∈ N.
Let Q be a prediction strategy such that for all x ∈

⋃

n≥1X
n and all f ∈ F ,

Q(sam (x, f) , ·) ∈ H and Q(sam (x, f) , xi) = f(xi) for all i ∈ [n]. Equivalently
Q is a learning algorithm that when given an f ∈ F-labeled training set outputs
a consistent 1 hypothesis from H. Then M̂Q,F(n) ≤ 2(d+1)

n
log2

(

4en
d

)

for all
n > d.

PROOF. For x ∈
⋃

n∈NX
n define the risk functional RQ,f,P (x) =

EP [Q (sam (x, f) , X) 6= f(X)]. Let d = ΨG-dim (F). By [2, Lemma 15] the
VC-dimension of the 0-1 loss class induced by F equals d. Then by e.g. [4],
for all f ∈ F , distributions P on X , ǫ > 0 and n > d,

PrPn (RQ,f,P (X) ≥ ǫ)≤ (2en/d)d21−ǫn/2 .

By this inequality and the fact that the risk is most 1,

1 In Section 1 we refer to the PAC-based bound as being in terms of ΨG-dim (F).
Consistency of Q implies that ΨG-dim (F) ≤ ΨG-dim (H) so we are being at worst
generous to the PAC-based bound.
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Algorithm 1 Deterministic multiclass one-inclusion prediction strategy QG,F

Given: F ⊆ {0, . . . , k}X , sam ((x1, . . . , xn−1), f) ∈ (X × {0, . . . , k})n−1 s.t.
f ∈ F , xn ∈ X
Returns: a prediction of f(xn) in {0, . . . , k}

1. V ←− Πx (F) ;
2. G ←− G (V ) ;

3.
−→
G ←− orient G to minimize the maximum outdegree ;

4. Vspace ←− {v ∈ V | v1 = f(x1), . . . , vn−1 = f(xn−1)} ;
5. if Vspace = {v} then return vn ;

6. else return the nth component of the head of hyperedge Vspace in
−→
G ;

EPn [RQ,f,P (X)] = EPn [RQ,f,P (X)|RQ,f,P (X) < ǫ] PrPn (RQ,f,P (X) < ǫ)

+EPn [RQ,f,P (X)|RQ,f,P (X) ≥ ǫ] PrPn (RQ,f,P (X) ≥ ǫ)

≤ ǫ+ (2en/d)d21−ǫn/2 .

Taking ǫ = 2t−1 (log2(nd
−1) + d log2(2end

−1)) the result follows by Fubini’s
theorem. �

2.4 The one-inclusion prediction strategy

A subset of the n-cube—the projection of some F—induces the one-inclusion
graph, which underlies a natural prediction strategy that is the focus of this
section. The following definition generalizes the important data structure to
subsets of {0, . . . , k}n.

Definition 8 (One-inclusion hypergraphs) The one-inclusion hypergraph
G (V ) = (V,E) of V ⊆ {0, . . . , k}n is the undirected graph with vertex-set V
and hyperedge-set E of maximal (with respect to inclusion) sets of pairwise
hamming-1 separated vertices. Under k = 1, the induced E is an edge-set and
G (V ) reduces to the one-inclusion graph. The label of a (hyper)edge e is the
index i ∈ {1, . . . , n} such that ui 6= vi for u,v ∈ e, u 6= v.

The one-inclusion graph’s prediction strategy QG,F [13] immediately general-
izes to the multiclass prediction strategy of Algorithm 1. In words, the one-
inclusion graph G of the projection of F on x ∈ X n is formed. G is then

oriented to
−→
G so that maximum outdegree is minimized. Recall that an ori-

ented hyperedge is a set with a single element identified as the head. The set
Vspace of vertices in G consistent with the labeled (n − 1)-sample is formed.
This set is either a singleton or a hyperedge in G. If Vspace is a singleton v,
predict the label of f(xn) as the nth component of v, vn. Otherwise predict

the last component of the head of the directed hyperedge in
−→
G .
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Algorithm 2 Randomized multiclass one-inclusion prediction strategy
QGrand,F

Given: F ⊆ {0, . . . , k}X , sam ((x1, . . . , xn−1), f) ∈ (X × {0, . . . , k})n−1,
xn ∈ X
Returns: a random prediction of f(xn)

1. V ←− Πx (F) ;
2. G = (V,E)←− G (V ) ;
3. Pe ←− distribution on e ∈ E minimizing total probability

incident to each vertex ;
4. Vspace ←− {v ∈ V | v1 = f(x1), . . . , vn−1 = f(xn−1)} ;
5. if Vspace = {v} then return vn ;

else {
6. Select V ∈ Vspace randomly according to distribution PVspace ;
7. return the nth component of V ;
}

3

x2

x1

0

2

1

0

1

2

0 21

x

Fig. 1. The one-inclusion hypergraph
of Example 9. Vertices are depicted
as points, hyperedges as bounding el-
lipses.

3

x2

x1

0

2

1

0

1

2

0 21

x

Fig. 2. The hypergraph of Figure 1
oriented with maximum outdegree 2.
Predictions are made by following the
head.

Example 9 Consider the subset V = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0),
(1, 2, 0), (2, 2, 0), (1, 1, 1), (2, 1, 1), (0, 1, 2), (1, 1, 2), (2, 1, 2), (0, 2, 2)} ⊂ {0, 1, 2}3

that is induced by points x1, x2, x3 ∈ X and some class F ⊂ {0, 1, 2}X . It is
depicted in Figure 1 together with its induced hyperedge set. A possible orienta-
tion of the hypergraph, representing one of several possible prediction strategies
for F on {x1, x2, x3}, is shown in Figure 2; notice that the maximum outdegree
is 2.

Replacing orientation with a distribution over each (hyper)edge induces a
randomized strategy QGrand,F as shown in Algorithm 2.

For the remainder of this paper, barring Section 7, we will restrict our discus-
sion to the k = 1 case, on which the following result focuses. By exploiting
the combinatorial structure of concept classes, Haussler et al. were able to
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improve on best-known bounds on worst-case expected risk by a factor of
log n [13, Theorem 2.3].

Theorem 10 (The one-inclusion mistake bounds) M̂QG,F ,F(n) ≤ VC(F)
n

for every concept class F and n > 1. The same holds for the randomized
strategy.

A lower bound in [18] showed that the one-inclusion strategy’s performance
is optimal within a factor of 1 + o(1). In the deterministic (randomized) one-
inclusion prediction strategy, the orientation (respectively assignment of edge
distributions) is achieved by a simple reduction to a network flow problem [13].

2.5 Sample compressibility

We recall the notions of labeled [19,8,9] and unlabeled [16,17] compression
schemes. We begin with the former, essential definition of [19] on which all
subsequent definitions are based. Informally, one k-compresses a concept class
C by compressing any sample s of length at least k that is consistent with C,
to a subsample of length at most k and then mapping such a compressed-set
to some s-consistent concept (not necessarily belonging to C).

Definition 11 (Labeled compression schemes) Let k ∈ N, domain X
and family F ⊆ {0, 1}X be arbitrary, and consider a pair of mappings of
the following form

κF :
∞
⋃

n=k

(X × {0, 1})n −→
k
⋃

l=0

(X × {0, 1})l

ρF :

(

k
⋃

l=0

(X × {0, 1})l
)

×X −→ {0, 1} .

If, for each f ∈ F and x ∈
⋃∞
n=k X

n, the following conditions are satisfied,

(i) [ subsample condition]: the compression function κF maps the sequence
sam (x, f) to a subsequence of length at most k, called the representative
of f ; and

(ii) [ consistency condition]: the reconstruction function ρF labels xi consis-
tently with f(xi) for each i ∈ [n].

Then (κF , ρF) is a k-compression scheme. A k-compression scheme is said
to have size k, and if the representative size bound k is met with equality
for some f ∈ F and x ∈ X n then we say it is of size exactly k. A com-
pression scheme defines a hypothesis (not necessarily in F) by the mapping
ρF (κF(sam (x, f)), ·) : X → {0, 1}.
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Littlestone and Warmuth [19] showed that k-compressibility in the above la-
beled sense, for any k < ∞, is sufficient for learnability. Furthermore their
proof is considerably simpler than (the more traditional) learnability proofs
based directly on finite VC-dimension. The authors asked the natural question
of necessity [19,8,9,24,25,16,17], which corresponds to the following.

Problem 12 (Sample compression) Does every VC-dimension d <∞ con-
cept class have a labeled compression scheme of size O(d)?

Floyd and Warmuth were the first to demonstrate a significant positive result
on the problem, by showing that maximum classes of VC-dimension d can be
d-compressed [8,9]. Over a decade later Kuzmin and Warmuth recently showed
that d-maximum classes can in fact be compressed to unlabeled sets [16,17];
earlier, Ben-David and Litman demonstrated a special-case of this result in [3].

Definition 13 (Unlabeled compression schemes) Let C be a maximum
concept class of VC-dimension d on a finite domain X . A representation map-
ping r of C satisfies:

(1) r is a bijection between C and subsets of X of size at most d; and
(2) [ non-clashing] : c| (r(c) ∪ r(c′)) 6= c′| (r(c) ∪ r(c′)) for all c, c′ ∈ C, c 6=

c′.

Given bijectivity, the non-clashing condition is equivalent to:

3. For each x ⊆ X , c ∈ C, there exists exactly one c′ ∈ C such that
sam (x, c′) = sam (x, c) and r(c) ⊆ x.

Such a representation mapping constitutes a d-unlabeled compression scheme
for C.

This definition is sufficient for the unlabeled analogue of the labeled Defini-
tion 11, where a C-consistent sample is compressed to an unlabeled sample-
subsequence of length at most d and which itself can be reconstructed to a
concept consistent with the original sample. Trivially a k-unlabeled compres-
sion scheme can be transformed into a k-compression scheme; however it is
still not clear whether including labels aids compression or not. An answer
to Problem 12 must provide a general scheme that satisfies the two condi-
tions laid out in Definition 11, and need go no further. Kuzmin and Warmuth
were able to prove that a sophisticated Tail Matching algorithm successfully
d-unlabeled compresses all d-maximum concept classes [16,17]. They also pro-
posed a significantly simpler unlabeled Peeling algorithm but it is still not
known whether this correctly compresses maximum classes. The algorithm
assigns representatives to concepts by iteratively ‘peeling’ away a minimum
degree vertex from the present one-inclusion graph of the class; the peeled
vertex’s representative is assigned to be the set of remaining edges adjoining
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that vertex, and then that vertex is removed. Two of the combinatorial results
in this paper relate to Kuzmin and Warmuth’s conjectured correctness proof
for Peeling, as described in Section 6 below.

What is needed for the compressibility conjecture of Warmuth et al. is a
general d-compression scheme of d-maximal classes. Any concept class C of
VC-dimension d can be expanded by adding one concept at a time until
it is d-maximal, and an un/labeled d-compression scheme for such a maxi-
mal class immediately induces a d-sized scheme for C. With this and the d-
compressibility of maximum classes in mind, the following question naturally
arises.

Problem 14 As a function of d <∞, what is an upper-bound on the supre-
mum over each d-maximal class V , of the infimum of the VC-dimension of
maximum classes containing V ?

An answer of O(d) would immediately imply a positive solution to the com-
pressibility conjecture. It is clear that maximum classes have a very special,
recursive structure that is not shared by maximal classes. In particular con-
sider the following products of projecting away an axis [26,10].

Definition 15 For any V ⊆ {0, 1}n, define with respect to i ∈ [n]

(i) The reduction, V i = Π[n]\{i}

({

v ∈ V | i ∈ IG(V )(v)
})

; and

(ii) The tail, taili (V ) =
{

v ∈ V | i /∈ IG(V )(v)
}

,

where IG(V )(v) ⊆ [n] denotes the set of labels of the edges incidental to vertex
v ∈ V .

Welzl [26] proved that the reduction Ci and projection Π[n]\{i} (C) of a d-
maximum class C are (d − 1)- and d-maximum concept classes respectively;
and through the recursive decomposition of a given maximum class into these
products, several sets of authors have shown that a maximum class can be
compressed recursively [8,9,16,17]. In particular, to the best of our knowledge
all maximum compression schemes appeal to this special structure that is not
shared by non-maximum maximal classes. It is not yet clear how to compress
maximal classes in general, or whether the specialized schemes developed for
maximum classes can be brought to bear on this task.

3 Shifting and graph density

The key to proving the classic one-inclusion mistake bound of Theorem 10 is
the following result on graph density [13, Lemma 2.4].
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Lemma 16 (One-inclusion graph density bound) For all n ∈ N, V ⊆
{0, 1}n, dens (G (V )) ≤ VC(V ).

An elegant proof of this deep result, due to Haussler [12], uses shifting. Shift-
ing is the process of contracting a subset of the n-cube towards 0 along one
direction s ∈ [n] at a time – each point with a gap below in the s direction is
translated down.

Definition 17 (Shifting operators) For each s ∈ [n] define the shift oper-
ators on vertex v ∈ V ⊆ {0, 1}n and vertex-set V , respectively, as

Ss(v;V )=















(v1, . . . , vs−1, 1, vs+1, . . . , vn) if vs = 1 and

(v1, . . . , vs−1, 0, vs+1, . . . , vn) ∈ V

(v1, . . . , vs−1, 0, vs+1, . . . , vn) otherwise

Ss(V )= {Ss(v;V ) | v ∈ V } .

One-inclusion graph G (V ) is said to be shifted to G (Ss(V )) along s – that is,
the ‘shifted’ edge-set is the edge-set induced by the shifted vertex-set.

Closed-below sets are those subsets of the n-cube that are the fixed-points of
shifting.

Definition 18 Let I ⊆ [n]. We call a subset V ⊆ {0, 1}n I-closed-below if
Ss(V ) = V for all s ∈ I. If V is [n]-closed-below then we call it closed-below.

The process of “shifting down to 0” can be generalized to axis-parallel contrac-
tions to v⋆ ∈ {0, 1}n (or equivalently shifting can be preceded by a relabeling
of component-wise labels, and followed by the subsequent inverse re-labelings).
For such cases the closed-below property simply generalizes to a fixed-point
property. Indeed many of the following properties and their consequences for
shifting also apply to these more general contractions.

A number of properties of shifting follow relatively easily [12]:

|Ss(V )| = |V | (1)

VC(Ss(V )) ≤ VC(V ) (2)

|E| ≤ |V | · VC(V ) for closed-below V (3)

|Ss(E)| ≥ |E| (4)

∃T ∈ N, s ∈ [n]T s.t.SsT
(. . . Ss1(V )) is closed-below (a fixed-point) . (5)

The first three properties follow, respectively, from the injectivity of Ss( · ;V ),
that Ss(V ) shatters I ⊆ [n] ⇒ V shatters I, and that maxv∈V ‖v‖1 ≤ VC(V )
since V is closed-below. The fourth property can be proven by considering
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the effects of shifting on edges, by cases. Properties (1–2) and the justification
of (3) together imply Sauer’s lemma; Properties (1–5) lead to

|E|

|V |
≤ . . . ≤

|SsT
(. . . Ss1(E))|

|SsT
(. . . Ss1(V ))|

≤ VC(SsT
(. . . Ss1(V ))) ≤ . . . ≤ VC(V )

proving Lemma 16.

3.1 Shatter-invariant shifting

While Haussler shifts to bound density, the number of edges can increase
and the VC-dimension can decrease—both contributing to the observed gap
between graph density and capacity. Our first result demonstrates that shifting
can in fact be controlled to preserve VC-dimension.

Lemma 19 Consider arbitrary n ∈ N, I ⊆ [n] and V ⊆ {0, 1}n that shat-
ters I. There exists a finite sequence s1, . . . , sT in [n] such that each Vt =
Sst

(. . . Ss1(V )) shatters I and VT is closed-below. In particular VC(VT ) =
VC(VT−1) = . . . = VC(V ).

PROOF. ΠI (·) is invariant to shifting on I = [n]\I. So some finite number of
shifts on I will produce a I-closed-below family W that shatters I. Hence W
must contain representatives for each element of {0, 1}|I| on I with components
equal to 0 outside I. Thus the shattering of I is invariant to the shifting of W
on I, so that a finite number of shifts on I produces an I-closed-below W ′ that
shatters I. Repeating the process a finite number of times until no non-trivial
shifts are made produces a closed-below family that shatters I. The second
claim now follows from (2). �

In addition to the following interesting but inapplicable approach to bound-
ing density, shatter-invariant shifting will be applied in Section 3.2 to prove
that only maximum subsets can maximize density amongst all subsets with
constant VC-dimension.

Remark 20 Lemma 19 suggests that we study graph density by accounting
for edges added during shifting—edges that must appear in the final closed-
below graph W that are not present in the original V . If d = VC(V ) then for
each d-index-set I witnessing the VC-dimension of V , V can be shifted down
to some fixed-point WI while retaining the shattering of I. Such a WI must
contain an I-colored d-cube, and in particular each of that cube’s d2d−1 edges.
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We can thus maximize a lower-bound on the number of edges added to V when
shifting to WI , optimizing over the collection of index sets S = {I ⊆ [n] : |I| =
d, V shatters I} and witnessing subsets VI = {U ⊆ V | U shatters I}. This
produces the density bound of

|E|

|V |
≤ d−

d2d−1 −minI∈S maxU∈VI
|E (G (U)) |

|V |
≤ d .

Shifting can be further controlled to retain shattering of certain collections of
sets, which can be applied to produce similar bounds.

3.2 Tightly bounding graph density by symmetrization

Kuzmin and Warmuth [17] introduced Dd
n as a potential bound on the graph

density of maximum classes. We begin with properties of Dd
n, a technical

lemma and then proceed to the main result which positively resolves the con-
jecture of Kuzmin and Warmuth. A discussion of the sample compressibility
consequences of the result can be found in Section 6.

Definition 21 Define Dd
n =

n

(

n−1
≤d−1

)

( n
≤d )

for all n ∈ N and d ∈ [n]. Denote by

V d
n the VC-dimension d closed-below subset of {0, 1}n equal to the union of all
(

n
d

)

closed-below embedded d-cubes.

Lemma 22 Dd
n

(i) equals the graph density of V d
n for each n ∈ N and d ∈ [n];

(ii) is strictly upper-bounded by d, for all n;
(iii) equals d

2
for all n = d ∈ N;

(iv) is strictly monotonic increasing in d (with n fixed);
(v) is strictly monotonic increasing in n (with d fixed); and
(vi) approaches d as n→∞.

PROOF. For each 1 ≤ d ≤ n < ∞, the number of vertices of V d
n may be

counted by considering all vertices with i ≤ d many ones together; edges can
be similarly counted by noting that a vertex with 1 < i ≤ d ones is connected
to i vertices with i−1 ones. This leads to the following equality for the density
of G

(

V d
n

)

:

∣

∣

∣E
(

G
(

V d
n

))∣

∣

∣

|V d
n |

=

∑d
i=1 i

(

n
i

)

∑d
i=0

(

n
i

) =
n
∑d−1
i=0

i+1
n

(

n
i+1

)

(

n
≤d

) =
n
∑d−1
i=0

(

n−1
i

)

(

n
≤d

) =
n
(

n−1
≤d−1

)

(

n
≤d

) ,
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proving (i). Since for all A,B,C,D > 0, A
B
< A+C

B+D
iff A

B
< C

D
, it is sufficient

for (iv) to prove that Dd−1
n <

n(n−1

d−1
)

(n
d)

. By (i) and Lemma 16 Dd
n ≤ d, and so

Dd−1
n ≤ d− 1 < d =

n · (n− 1)!

n!

(n− d)!

(n− d)!

d!

(d− 1)!
=
n (n−1)!

(n−d)!(d−1)!

n!
(n−d)!d!

=
n
(

n−1
d−1

)

(

n
d

)

Monotonicity in d, (i) and Lemma 16 together prove (ii). Now for any n ∈ N

Dn
n =

n
(

n−1
≤n−1

)

(

n
≤n

) =
n2n−1

2n
=

n

2
,

proving part (iii). Theorem 24 states that V d
n uniquely maximizes density,

at Dd
n, over all closed-below families of VC-dimension d in the n-cube. Thus

Dd
n−1 = dens

(

V d
n−1

)

< Dd
n which is part (v). Part (vi) follows from the asymp-

totically matching lower-bound of [18]. �

Lemma 23 Consider arbitrary U, V ⊆ {0, 1}n with dens (G (V )) ≥ ρ >
0, |U | ≤ |V | and |E (G (U)) | ≥ |E (G (V )) |. If dens (G (U ∩ V )) < ρ then
dens (G (U ∪ V )) > ρ.

PROOF. If G (U ∩ V ) has density less than ρ then

|E (G (U ∪ V )) |

|U ∪ V |
≥
|E (G (U)) |+ |E (G (V )) | − |E (G (U ∩ V )) |

|U |+ |V | − |U ∩ V |

≥
2|E (G (V )) | − |E (G (U ∩ V )) |

2|V | − |U ∩ V |

>
2ρ|V | − ρ|U ∩ V |

2|V | − |U ∩ V |
= ρ

�

Theorem 24 (Symmetrization density bound) Every family V ⊆
{0, 1}n with d = VC(V ) has (V,E) = G (V ) with graph density

|E|

|V |
≤ Dd

n < d . (6)

For n ∈ N and d ∈ [n], V d
n is the unique closed-below VC-dimension d subset

of {0, 1}n meeting (6) with equality. A VC-dimension d family V ⊆ {0, 1}n

meets (6) with equality only if V is maximum.
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Fig. 3. The improved graph density bound of Theorem 24. The den-
sity bounding Dd

n is plotted (dotted solid) alongside the previous best d
(dashed), for d ∈ {1, 2, 10}.

PROOF. Allow a permutation g ∈ Sn to act on vector v ∈ {0, 1}n and

family V ⊆ {0, 1}n by g(v) =
(

vg(1), . . . , vg(n)

)

and g(V ) = {g(v) | v ∈ V };

and define Sn(V ) =
⋃

g∈Sn
g(V ). Note that a closed-below VC-dimension d

family V ⊆ {0, 1}n satisfies Sn(V ) = V iff V = V d
n , as VC(V ) ≥ d implies V

contains an embedded d-cube, invariance to Sn implies further that V contains
all

(

n
d

)

such cubes, and VC(V ) ≤ d implies that V ⊆ V d
n . Consider now any

V ∗
n,d ∈ arg min

{

|U |

∣

∣

∣

∣

∣

U ∈ arg max
{U⊆{0,1}n|VC(U)≤d,U closed-below}

dens (G (U))

}

.

For the purposes of contradiction assume that V ∗
n,d 6= g(V ∗

n,d) for some permu-

tation g ∈ Sn. Then if dens
(

G
(

V ∗
n,d ∩ g(V

∗
n,d)

))

≥ dens
(

G
(

V ∗
n,d

))

then V ∗
n,d

would not have been selected above (i.e. a closed-below family at least as small
and dense as V ∗

n,d ∩ g(V ∗
n,d) would have been chosen). Thus

dens
(

G
(

V ∗
n,d ∪ g(V

∗
n,d)

))

> dens
(

G
(

V ∗
n,d

))

by Lemma 23. But then again

V ∗
n,d would not have been selected (i.e. a distinct family at least as dense

as V ∗
n,d ∪ g(V

∗
n,d) would have been selected instead, since every vector in this

union contains no more than d 1’s). Hence V ∗
n,d = Sn(V

∗
n,d) and so V ∗

n,d = V d′

n

and by Lemma 22.(i) dens
(

G
(

V ∗
n,d

))

= Dd′

n , for d′ = VC(V ∗
n,d) ≤ d. But by

Lemma 22.(iv) this implies that d = d′ and (6) is true for all closed-below fam-
ilies; V d

n uniquely maximizes density amongst all closed-below VC-dimension
d families in the n-cube.
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For an arbitrary V ⊆ {0, 1}n with d = VC(V ) consider any of its closed-below
fixed-point (cf. (5)),W ⊆ {0, 1}n. Noting that VC(W ) ≤ d and dens (G (V )) ≤
dens (G (W )) by (2) and (1) & (4) respectively, the bound (6) follows directly
for V . Furthermore if we shift to preserve VC-dimension then VC(W ) = d
while still |V | = |W |. And since dens (G (W )) = Dd

n only if W = V d
n , it follows

that V maximizes density amongst all VC-dimension d families in the n-cube,
with dens (G (V )) = Dd

n, only if it is maximum. �

Theorem 24 improves on the VC-dimension density bound of Lemma 16 for low
sample sizes (see Figure 3). This new result immediately implies the following
one-inclusion mistake bounds (see Appendix A for the proof).

Theorem 25 (Symmetrization mistake bound) Consider any n ∈ N

and F ⊆ {0, 1}X with VC(F) = d < ∞. Then M̂QG,F ,F(n) ≤
⌈

Dd
n

⌉

/n and

M̂QGrand,F ,F(n) ≤ Dd
n/n.

For small d, n∗(d) = min
{

n ≥ d | d =
⌈

Dd
n

⌉}

—the first n for which the new
and old deterministic one-inclusion mistake bounds coincide—appears to re-
main very close to 2.96d (see Fig. 4). The randomized strategy’s mistake bound
of Theorem 25 offers a strict improvement over that of [13].

Fig. 4. Calculating the point at which the new mistake bound of Theorem 25
coincides with that of [13,12]. For each 1 ≤ d ≤ 300, we see that the new
bound provides a strict improvement iff n is no more than about 2.96d.

Remark 26 The symmetrization method of Theorem 24 can be extended over
subgroups G ⊂ Sn to gain even tighter estimates of density. Just as the Sn-
invariant V d

n is the maximizer of density among all closed-below V ⊆ V d
n ,
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there exist G-invariant families that maximize the density over all of their
sub-families: to estimate a graph’s density, find the smallest subgroup that ad-
mits an invariant family containing the given graph and count that invariant’s
density.

4 Characterizations

We now consider several related characterizations and properties of the one-
inclusion graph. Beginning with Section 4.1 we present an edge-colorability
characterization of graphs isomorphic to a one-inclusion graph, extending re-
sults of [7,15,14]. The characterization fully justifies the use of ‘color’ in-place
of ‘dimension’ when discussing edges, embedded cubes, etc. Section 4.2 in-
troduces the complementary characterization of maximum and maximal sub-
sets of the n-cube—an extension of the notion of forbidden labels [8]. Finally
the well-known characterization of VC-dimension 1 maximum classes as trees
composed of a single edge of each color [5], is extended in Section 4.3 to an
algebraic topological property of maximum classes of arbitrary dimension.

4.1 Characterizing one-inclusion-isomorphic graphs

In this section we equate a set of n colors with the n dimensions of {0, 1}n,
coloring each edge of a one-inclusion graph according to the axis to which it
is parallel. Constraints on the structure of a one-inclusion graph can then be
re-written in terms of conditions on such a coloring; and from this we can char-
acterize arbitrary graphs isomorphic to one-inclusion graphs. In particular the
colorability characterization facilitates the useful visualization of subgraphs of
the n-cube for n > 3.

Definition 27 Let G = (V,E) be an arbitrary graph. Then an edge-coloring
or simply coloring of G is a mapping col : E → C into some finite set of
colors C. The parity of a color c ∈ C in some subgraph (W,F ) of G is defined
as ⊕(W,F ) (c) =

∑

f∈F 1 [col (f) = c] mod 2. If the parity is congruent to 0 (1)
then we say that c has even (odd) parity in (W,F ). If the subgraph is the whole
graph G or is otherwise understood then we may drop the subgraph parameter
as in ⊕ (c) = ⊕G (c). The parity ⊕(W,F ) =

(

⊕(W,F ) (c1) , . . . ,⊕(W,F ) (cn)
)

∈

{0, 1}n of an edge coloring col (·) in subgraph (W,F ) is the vector of parities
taken over the colors {c1, . . . , cn} = C.

We begin with necessary colorability conditions.

Proposition 28 If G = (V,E) is isomorphic to one-inclusion graph G (φ(V ))
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via the mapping φ : V → {0, 1}n, then there exists a coloring col : E → C =
{c1, . . . , cn} of G satisfying:

(i) Each color has even parity in each cycle of G.
(ii) There do not exist two walks in G with the same initial point and different

end points, having the same color parities.
(iii) If x, y, z ∈ V are vertices such that x, y are connected to z by walks

Wx,Wy with
∣

∣

∣⊕Wx
xor ⊕Wy

∣

∣

∣ = 1, then {x, y} ∈ E. Furthermore, if

⊕φ(Wx) xor ⊕φ(Wy) = {i} ⊂ [n] then the induced coloring in G (φ(V ))
satisfies col ({φ(x), φ(y)}) = ci.

In addition (ii) implies (iv) and is equivalent to (v):

(iv) At each v ∈ V each color appears in the adjoining edges of v at most
once.

(v) Any walk in G with distinct start and end vertices must have some odd-
parity color.

In particular coloring each {x, y} ∈ E by the index on which φ(x) and φ(y)
differ, is one such coloring.

PROOF. To prove (ii) ⇒ (iv) consider distinct u, v, w ∈ V such that
{u, v}, {v, w} ∈ E. Then (ii) implies that the single-edge walks (v, u) and
(v, w) must have different parities which implies that col ({u, v}) 6= col ({v, w})
leading to (iv). For the equivalence, suppose that (ii) were false, then take such
a pair of falsifying walks W1,W2 both starting at some s ∈ V and ending at
f1 6= f2 ∈ V respectively; the walk W = W−1

1 ◦W2 has all-even parities. But
together with f1 6= f2 this implies that W witnesses the falsification of (v).
Now suppose that (ii) is true for G and consider any walk W starting and
finishing at distinct s, f ∈ V respectively. Pick any vertex m along W and
consider the components W1,W2 along W starting (ending) at s (m) and m
(f) respectively—at most one of these could be a walk with empty edge-set.
It follows that walks W−1

1 and W2 begin at m and end at s 6= f so that W1

and W2 must have different parities. Hence the composition W must have at
least one odd component-parity implying (v).

Now suppose that (V,E) is a isomorphic to the one-inclusion graph G (V ) ⊆
{0, 1}n, and we must construct an edge-coloring satisfying the given conditions.
We color each edge {u, v} ∈ E with col ({u, v}) := i ∈ [n] s.t. φ(u)i 6= φ(v)i.
This is a well-defined function since {φ(u), φ(v)} is an edge in G (φ(V )), and
so exactly one such i exists. That is, we are coloring G and G (φ(V )) such that
each edge’s color is invariant under φ. (i) follows from the fact that a cycle
in {0, 1}n, viewed as a walk with arbitrary start point along the cycle, must
experience an even number of steps in any one direction since the end and start
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vertices must coincide. The end vertex of a {0, 1}n-walk with fixed starting
vertex is invariant under permutations of the walk’s step direction sequence,
implying (ii) as a special case by reduction of color occurrence counts modulo 2.
Take walks Wx,Wy as in condition (iii). Clearly ⊕Wx

xor ⊕Wy
= φ(x) xor φ(y);

thus φ(x) and φ(y) differ on exactly the single coordinate i ∈ [n] and hence
{φ(x), φ(y)} is an edge of G (φ(V )) and col ({x, y}) = col ({φ(x), φ(y)}) = i.�

Conditions (i) and (ii) together exactly characterize cycles by dictating that
a walk is a cycle iff the walk has all even parities. Condition (iii) additionally
says that if we can close a walk with a single one-inclusion edge e to make a
valid cycle (with even parities) then e is indeed included in G (φ(V )).

Proposition 29 Let G = (V,E) be an arbitrary graph with k ∈ N connected
components. If G can be edge-colored with C = {c1, . . . , cn} such that condi-
tions (i)–(iii) of Proposition 28 hold, then G is isomorphic to a one-inclusion
graph in {0, 1}n+⌈log2(k)+1⌉ for k > 1, or to a one-inclusion graph in {0, 1}n

for connected G.

PROOF. Assume that G is connected and let T = (V,E ′) be an arbitrary
spanning tree for G, arbitrarily rooted at some v0 ∈ V . For each v ∈ V let
Pv denote the unique path from v0 to v in T , and define ℓ(v) = ⊕Pv

. Triv-
ially ℓ(v0) = ⊕({v0},∅) = (0, . . . , 0). We claim that ℓ(v) represents a valid one-
inclusion isomorphism: that ℓ(v) is an injection, that the image of V under ℓ(·)
induces a one-inclusion graph such that {u, v} ∈ E iff dhamm (ℓ(u), ℓ(v)) = 1
and with {u, v}, {u, v′} ∈ E, v 6= v′ implying that ℓ(u) xor ℓ(v) 6= ℓ(u) xor ℓ(v′).

By (ii) ℓ(·) is an injection. Suppose that {u, v} ∈ E; if {u, v} ∈ E ′ then
dhamm (ℓ(u), ℓ(v)) = 1 by construction of ℓ, so suppose that {u, v} ∈ E\E ′.
ThenW = Pu◦{u, v}◦P

−1
v is a cycle inG and by (i) must have all even parities.

Thus the parities of Pu and Pv on colors in C\ {col ({u, v})} must coincide and
on col ({u, v}) must differ. Thus again dhamm (ℓ(u), ℓ(v)) = 1. Suppose for dis-
tinct u, v ∈ V that dhamm (ℓ(u), ℓ(v)) = 1 then by (iii) {u, v} ∈ E; furthermore
col ({u, v}) equals the coordinate on which ℓ(u) and ℓ(v) differ. Finally sup-
pose that {u, v}, {u, v′} ∈ E, v 6= v′. Then together with (iv) this second con-
sequence of (iii) implies that ℓ(u) xor ℓ(v) = {col ({u, v})} 6= {col ({u, v′})} =
ℓ(u) xor ℓ(v′).

If k > 1 then map each component of G into a different copy of the n-cube.
There may be common vectors within the different n-cubes, or vectors that are
hamming-1 apart so that new unwanted edges would be necessary to maintain
the one-inclusion property. Thus to maintain both the isomorphism and the
one-inclusion property we embed each image into a different corner of an
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{0, 1}n+m-cube for sufficiently large m. It can be shown 2 that for any m ∈ N

the {0, 1}m-cube contains a set of 2m−1 vectors that are pairwise no less than
hamming-2 apart. Thus we can pack k points in an ⌈log2(k) + 1⌉-cube and
so we embed the k disconnected one-inclusion graphs constructed as above in
corners of the n + ⌈log2(k) + 1⌉-cube so that no new edges need to be added
to maintain the one-inclusion property. �

In [14], Havel and Morávek prove that a graph (V,E) with vertex-set V ⊆
{0, 1}n admits a coloring satisfying conditions (i) and (v) iff {u, v} ∈ E implies
dhamm (u, v) = 1. This and other earlier work, such as [7,15], focus on identify-
ing isomorphism with a subgraph of the n-cube, rather than isomorphism with
a one-inclusion graph as considered here where the additional condition (iii)
is required. These so-called cubical (as opposed to necessarily one-inclusion)
graphs have applications in networks and parallel algorithms [20]; significant
work has gone into enumerating classes of graphs that are cubical/non-cubical
and also into the computational complexity of the corresponding decision prob-
lem.

4.2 The complementary view of one-inclusion graphs

Focusing on the complement of a subset of the n-cube turns out to provide a
surprisingly useful view on the combinatorics of such subsets.

Definition 30 The complementary set of a family V ⊆ {0, 1}n is V =
{0, 1}n\V . A collection of subcubes C contained/embedded in V is called d-
complete if each subcube is of dimension d and for each choice of I ⊂ [n] with
|I| = d there exists a C ∈ C shattering I (or equivalently C is I-colored). A
maximally overlapping d-complete collection in the n-cube is a minimizer of
|
⋃

C∈C C| over all d-complete collections in the n-cube.

The key to the usefulness of the complementary set is the following geometric
characterization of a finite concept class VC-dimension.

Theorem 31 V ⊆ {0, 1}n has VC(V ) ≤ d iff V contains a (n − d − 1)-
complete collection of subcubes. In particular this implies that VC(V ) = d iff
V contains a (n−d−1)-complete collection of subcubes but no (n−d)-complete
collection.

2 Points in diagonally opposite corners—take all vectors with an even number of
1’s.
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PROOF. For fixed I ⊆ [n], |I| = k + 1, ΠI (V ) 6= {0, 1}k+1 iff there exists
an ([n]\I)-colored (n − k − 1)-subcube embedded in V . Thus VC(V ) ≤ k
iff V contains a (n − k − 1)-complete collection of subcubes. Now apply this
equivalence directly with k = d and its inverse with k = d − 1. This proves
VC(V ) ≤ d iff V contains a (n − d − 1)-complete collection and VC(V ) ≥ d
iff V does not contain a (n− d)-complete collection. �

From this result we gain the first natural characterization of maximal classes.

Lemma 32 (Complementary characterization of maximal sets) V ⊆
{0, 1}n of VC(V ) = d is maximal iff V is a (n− d− 1)-complete collection of
subcubes and properly contains no (n− d− 1)-complete collection.

PROOF. Consider any V ⊆ {0, 1}n with V equal to a (n− d− 1)-complete
collection, and properly containing no other (n − d − 1)-complete collection.
Then Theorem 31 implies that VC(V ) = d. Adding any point v /∈ V to
V corresponds to removing v from V , thereby breaking at least one of the
(n−d−1)-cubes in V . Since V ∪ {v} contains no (n−d−1)-complete collection,
VC(V ∪ {v}) ≥ d+ 1 which by definition implies that V is maximal.

Consider now any maximal V ⊆ {0, 1}n of VC-dimension d. Then by Theo-
rem 31, V contains a (n− d− 1)-complete collection C. By the maximality of
V , V \

⋃

C∈C C = ∅ since any point v ∈ V not covered by C could be added
to V so that V \{v} would still contain

⋃

C∈C C implying the contradictory
VC(V ∪{v}) = d. Thus V contains (but not properly contains) an (n−d−1)-
complete collection. �

We can also study the complement of special maximal classes—maximum
classes.

Lemma 33 V d
n = {x ∈ {0, 1}n : ‖x‖1 ≤ d} is the only maximal closed-below

family of VC-dimension d in the n-cube. Thus maximal and maximum coincide
for closed-below families.

PROOF. Let V ⊆ {0, 1}n be a maximal closed-below family of VC-dimension
d. VC(V ) = d implies that V contains at least one d-cube but no (d+1)-cube
(where cubes are embedded in V and contain the origin). Maximality implies
that, for every v ∈ V , VC(V ∪ {v}) > d and thus that v must have at least
d+ 1 ones. Hence V = V d

n . �
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Theorem 34 (Complementary characterization of maximum sets)
For any n, d ∈ N and set V ⊆ {0, 1}n, the following statements are equiv-
alent:

(i) V is maximum with VC(V ) = d;
(ii) V is the union of a maximally overlapping (n−d−1)-complete collection
C, in the sense that C covers a minimum number of distinct points in
the n-cube (|

⋃

C∈C C| = |V | is minimum over all (n − d − 1)-complete
collections);

(iii) V is maximum with VC(V ) = n− d− 1.
(iv) V is the union of a maximally overlapping d-complete collection; and
(v) V and V contain a d-complete and a (n − d − 1)-complete collection

respectively.

PROOF. Let V ⊆ {0, 1}n be a maximum class with VC-dimension d. By
Lemma 32 maximal V has complement V equal to the union of some (n−d−1)-
complete collection C. If |

⋃

C∈C C| were not minimal over all (n − d − 1)-
collections then there would exist families of VC-dimension d in the n-cube
of larger cardinality than V contradicting the choice of V as maximum. Thus
(i) ⇒ (ii). Conversely if V ⊆ {0, 1}n is defined by V =

⋃

C∈C C, for some
maximally overlapping (n − d − 1)-complete collection C, then V can not
properly contain an (n− d− 1)-complete collection and so is maximal of VC-
dimension d and furthermore has maximum cardinality over all VC-dimension
d maximal subsets in the n-cube. So (ii) ⇒ (i).

For (iii) and (iv), let V
′
denote V with all n components of each of its vertices

flipped. Any sequence of shifts takes V down to a closed-below fixed-point iff
the sequence takes V up to a closed-above fixed-point iff it takes V

′
down to

the (correspondingly flipped) closed-below fixed-point. Since V is maximum,
every sequence of shifts down to a fixed-point maps V to V d

n as that is the
unique closed-below family of cardinality ( n

≤d ) and VC-dimension at most d
(see Lemma 33); such a sequence takes V up to V d

n and V
′
down to V n−d−1

n .
Now consider a VC-invariant shifting of V

′
down to a closed-below family; this

corresponds to a shifting of V down to V d
n . Hence the VC-invariant shifting of

V
′
has fixed-point V n−d−1

n and so V
′
is a maximum VC-dimension n − d − 1

family. Since VC(V ) = VC(V
′
) and |V | = |V

′
|, the results follows.

Consider now an arbitrary subset V ⊆ {0, 1}n such that V and V contain a d
and a (n− d− 1)-complete collection of cubes respectively. Denote the unions
of these collections Ud and Un−d−1 respectively. By Sauer’s Lemma, (ii) and

(iv), |V | ≥ |Ud| ≥
(

n
≤d

)

and |V | ≥ |Un−d−1| ≥
(

n
≤n−d−1

)

. With |V | = 22n

− |V |

this implies that V = Ud and V = Un−d−1, that Ud and Un−d−1 are the
unions of maximally overlapping collections and so that V is maximum of
VC-dimension d. The converse is immediate, and so (i) ⇔ (v). �
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Remark 35 The equivalences of (i)–(iv) in Theorem 34, were first shown by
Floyd in her thesis [8] under the guise of forbidden labels. Each complemen-
tary (n− d− 1)-cube of a maximum class of VC-dimension d can be uniquely
identified with the intersection over that cube’s concepts’ sets of support—i.e.
the cube’s concept with fewest 1’s. Floyd referred to such a concept as a forbid-
den label since no concept in the class can be consistent with that complemen-
tary concept. In particular Floyd showed that a maximum class is characterized
by its set of forbidden labels [8, Lemma 3.15] and that such a class has a maxi-
mum complement of the appropriate VC-dimension [8, Lemma 3.20]. She also
considered maximum classes on infinite domains, which is beyond the scope of
this paper. The relatively superficial change of viewpoint from forbidden labels
to complementary simplicial complexes may provide a useful geometric char-
acterization of maximum classes. The forbidden labels of maximal classes, as
per Lemma 32, were not discussed in [8].

With Theorem 34.(v), we can prove the following classic result (see e.g. [5,1])
characterizing VC-1 maximum classes.

Lemma 36 V ⊆ {0, 1}n is maximum of VC-dimension 1 iff G (V ) is a tree
with d uniquely colored edges.

PROOF. Consider maximum V ⊆ {0, 1}n of VC-dimension 1. By Theo-
rem 34, V equals a union of n uniquely colored edges and so is acyclic. By
Sauer’s Lemma |V | = n + 1. Thus V is a tree with n uniquely colored edges.
Conversely such a tree has VC-dimension 1 and has n + 1 vertices, and thus
is maximum. �

4.3 An algebraic topological property: maximum classes are contractible

We now develop a natural extension of the tree characterization of maximum
VC-1 classes of Lemma 36. The direction of extension replaces vertices and
edges of a graph by higher dimensional cubes; in the language of algebraic
topology we are interested in simplicial complexes (like graphs) that are con-
tractible (like trees). We begin with some preliminaries needed only for this
section, then state and prove the main theorem.

Definition 37 A homotopy is a continuous map F : X × [0, 1] → Y . The
initial map is F restricted to X × {0} and the final map is F restricted to
X ×{1}. We often say that the initial and final maps are homotopic; and for
such maps we refer to the respective product domains as X with the short-hand
understood by context. A homotopy equivalence between spaces X and Y is a
pair of maps f : X → Y and g : Y → X such that f ◦ g, is homotopic to the
identity map on Y and g ◦ f is homotopic to the identity map on X.
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Definition 38 A cubical simplicial complex is a union of solid cubes of the
form [a1, b1]× . . .× [am, bm] (for varying but bounded m) such that the inter-
section of any two cubes is either a cubical face of both cubes or the empty-set.

Recall that a contractible complex X is one which has the same homotopy
type as a point, that is, the identity map I : X → X is homotopic to the
constant map c : X → p a point in X. (Note c is considered as a map from
X to X with image p). Then in our situation of contractibility, the two maps
are c considered as the map from X to {p} and i : {p} → X which takes p to
p but considered as a point of X. Then the composition c ◦ i is the identity on
{p} so the constant homotopy which is independent of the second variable in
[0, 1] is the homotopy from c ◦ i to the identity on {p} and i ◦ c is homotopic
to the identity map I on X via the homotopy of the identity to the constant
map.

Theorem 39 (Algebraic topological property of maximum classes)
Maximum classes of VC-dim. d in the n-cube form d-dimensional cubical com-
plexes which are contractible subcomplexes of the cubical structure of the binary
hypercube [0, 1]n.

PROOF. Consider the projection map f from the n-cube to the (n − 1)-
cube. We prove our result by induction on n + d. So by assumption, any
Maximum(n′, d′) class with d′ + n′ < d + n is contractible. Let X denote our
Maximum(n, d) class, viewed as a d-dimensional cubical complex. Then we
know that f(X) = X ′ is a contractible d-dimensional cubical complex, since
it is a Maximum(n − 1, d) class. Also f projects the reduction, which is of
the form Y × [0, 1], onto Y , where Y is a Maximum(n − 1, d − 1) class, and
hence by the inductive hypothesis is a contractible (d−1)-dimensional cubical
complex.

Now we do some basic algebraic topology. Consider a pair of spaces such as
(X, Y × [0, 1]). So the second space is a subspace of the first one. Then we
can examine the effect of collapsing the subspace to a point. Write this as
X/Y × [0, 1] (a quotient space). Now by standard arguments, if the subspace
is contractible, then the quotient space is homotopy equivalent to the original
space. In other words, collapsing a contractible subspace to a point does not
affect the homotopy properties of a space. Note here that X is a cubical
complex and Y × [0, 1] is a subcomplex, which is a sufficient condition to
apply this collapsing result.

Next, consider the two quotient spaces, X/Y × [0, 1] and f(X)/Y . It also
follows by standard results that these are in fact homeomorphic. In fact, the
map f : X 7→ f(X) is one-to-one onX\(Y ×[0, 1]) and projects Y ×[0, 1]→ Y .
So again, since Y × [0, 1] is a subcomplex of X, it follows that the results of
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collapsing Y ×[0, 1] to a point inX and Y to a point in f(X) are homeomorphic
by the map induced by f . But now we can apply the result of the previous
paragraph. Namely we know by induction that f(X) is contractible and Y is
contractible, so f(X)/Y is contractible. But therefore it follows that X/Y ×
[0, 1] is contractible. Finally we got this by collapsing a contractible subspace
Y×[0, 1] to a point ( the extra factor [0, 1] makes no difference to contractibility
as is easy to see). So X is homotopy equivalent to X/Y × [0, 1] which we
have just proved is contractible, hence X is contractible. (Anything homotopy
equivalent to a contractible space is contractible). �

Note that there are contractible cubical complexes, equal to the union of a
complete collection of d-cubes, which are not maximum classes; and there are
also such cubical complexes which are not contractible.

x1 x2 x3 x4 x5
c1 0 0 0 0 0
c2 1 0 0 0 0
c3 0 1 0 0 0
c4 0 0 1 0 0
c5 1 1 0 0 0
c6 0 1 1 0 0
c7 1 0 1 0 0
c8 0 0 0 1 0
c9 1 0 0 1 0
c10 0 1 0 1 0
c11 0 1 1 1 0
c12 0 0 0 1 1
c13 1 0 0 1 1
c14 1 0 0 0 1
c15 0 0 1 0 1
c16 0 1 1 0 1
c17 0 1 0 0 1

Fig. 5. The non-maximum, con-
tractible, 2-complete collection of Ex-
ample 40.

x1 x2 x3 x4
c1 0 0 0 0
c2 1 0 0 0
c3 1 1 0 0
c4 1 0 1 0
c5 0 1 1 1
c6 0 1 1 0

Fig. 6. The non-maximum, incon-
tractible, 1-complete collection of Ex-
ample 41.

Example 40 Consider the union of a complete collection of 2-cubes in {0, 1}5

shown in Figure 5. This class is contractible but not maximum: the subset’s
VC-dimension and cardinality are 3 and 17 respectively, whereas the cardinal-
ity of a 2-maximum class in the 5-cube is 16.

Example 41 Consider the union of a complete collection of 1-cubes in {0, 1}4

shown in Figure 6. This class is not contractible or maximum: the subset’s
VC-dimension is 2, its cardinality is 6, and it is not even connected.

Remark 42 Theorems 34 and 39 together lead to the interesting result that
a d-complete cubical complex of fewest vertices is in fact contractible.
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5 One-inclusion minimum degree can exceed VC-dimension

Kuzmin and Warmuth conjectured [17] that every VC-dimension d <∞ class
has a one-inclusion graph with minimum degree δ ≤ d. This conjecture was
motivated by their Peeling algorithm: if the conjecture were true then the Peel-
ing algorithm would successfully compress all maximum classes. The following
counter-example, motivated by the complementary view of the one-inclusion
graph, resolves the conjecture as false. See Section 6 for an in-depth discussion
of peeling as well as other consequences of this result.

Theorem 43 There exists a family V ⊂ {0, 1}12 with VC-dimension 10 hav-
ing vertices of graph degree in {11, 12}.

PROOF. We describe V by way of V , which is composed of three vertex-
disjoint 4-cubes that are pairwise hamming-4 separated:

V = S1 ∪ S2 ∪ S3 , where S1 = {0, 1}4 × {(0, 0, 1, 1, 0, 0, 1, 1)}

S2 = {(0, 0, 1, 1)} × {0, 1}4 × {(1, 1, 0, 0)}

S3 = {(1, 1, 0, 0, 1, 1, 0, 0)}× {0, 1}4 .

We first establish that VC(V ) = d = 10. The three subcubes collectively con-
tain edges along each direction in [12], thus V contains an (n − d − 1) =
1-complete collection of cubes. The subcubes S1, S2, S3 shatter {1, . . . , 4},
{5, . . . , 8} and {9, . . . , 12} respectively, and since they are pairwise-4 apart
V cannot contain an (n − d) = 2-complete collection. Thus VC(V ) = 10 by
Theorem 31.

Since S1, S2, S3 are pairwise-4 separated, any vertex v ∈ V hamming-1 from
Si must be hamming-1 from exactly one w ∈ Si and at least distance-2 from
the other two complementary-subcubes; in particular every v ∈ V can adjoin
at most one w ∈ V and so at most one v’s potential {0, 1}12-neighbors can be
missing from V and so v has degree in {11, 12}. �

5.1 The uniform degree-VC ratio

Although the proof of Theorem 43 is tied to the details of the counter-
example—particularly that the δ-VC gap is 1—the example does immedi-
ately extend to related examples of higher VC-dimension, embedded in higher-
dimensional hypercubes.
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Corollary 44 For each d ≥ 10 and n ≥ d+2 there exists a family V ⊆ {0, 1}n

such that VC(V ) = d and δ (G (V )) = d+ 1.

PROOF. For d = 10 Theorem 43 provides a graph with V10 ⊂ {0, 1}
10+2

with VC-dimension 10 and minimum degree 11. For any d ≥ 10 we can con-
struct an appropriate Vd ⊂ {0, 1}

d+2, as we did for V10, with the following
complementary set:

V d =Sd,1 ∪ Sd,2 ∪ Sd,3
where

Sd,1 = {0, 1}4 × {(0, 0, 1, 1, 0, 0, 1, 1)}× {0}d−10

Sd,2 = {(0, 0, 1, 1)} × {0, 1}4 × {(1, 1, 0, 0)} × {0}d−10

Sd,3 = {(1, 1, 0, 0, 1, 1, 0, 0)}× {0, 1}d−6

The same arguments for V10 apply for general d > 10 to imply that VC(Vd) = d
and δ (G (Vd)) = d+ 1. Now to get families in arbitrary n-cubes for n ≥ d+ 2
(for d ≥ 10) note that we can simply embed the appropriate Vd in the n-cube,
i.e. as Vd×{0}

n−d−2, which does not affect VC-dimension or minimum degree.
�

Thus there are ‘many’ counter-examples for which the δ-VC gap is one, but
can larger gaps be achieved? A first step towards answering this question is
provided by the following corollary.

Lemma 45 For any n ∈ N and any V ⊆ {0, 1}n, VC(V × V ) = 2VC(V ) and
δ (V × V ) = 2δ (V ).

PROOF. V shatters index-set I ⊆ [n] iff V ×V shatters I◦I, where ◦ denotes
concatenation. For fixed u, v ∈ V consider the vertex u ◦ v ∈ V × V . u ◦ v is
hamming-1 from some x◦y, x, y ∈ {0, 1}n, iff either u = x and dhamm (v, y) = 1
or v = y and dhamm (u, x) = 1. Thus deg(u ◦ v) = deg(u) + deg(v) and

δ (G (V × V )) = min
v∈V ×V

deg(v) = min
u,v∈V

deg(u ◦ v) = 2 min
v∈V

deg(v) = 2δ (V )

�

Corollary 46 For each i ∈ N there exists a family V ∈ {0, 1}12i with
δ (G (V ))−VC(V ) = i.
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PROOF. Consider the family V ⊂ {0, 1}12 with VC(V ) = 10 and δ (V ) = 11
constructed as the counter-example in Theorem 43. Then by induction on i
Lemma 45 implies that for any i ∈ N, the product family Vi =

∏i
j=1 V ⊂

{0, 1}12i has VC(Vi) = 10i and δ (G (Vi)) = 11i. �

Corollary 46 demonstrates arbitrary δ-VC gaps. We see that to achieve large
gaps it is sufficient for both the minimum degree and VC-dimension to be
large. Whether this is necessary motivates the next definition.

Definition 47 (The uniform degree-VC ratio) The uniform degree-VC
ratio is defined as

κ = sup
n∈N

sup
V⊆{0,1}n

|V |≥1

δ (G (V ))

VC(V )
.

The classic density bound and the full n-cube establish basic upper- and lower-
bounds on κ.

Lemma 48 1 ≤ κ < 2.

PROOF. The lower-bound is witnessed by the n-cube: for n ∈ N,
δ (G ({0, 1}n)) = n and VC({0, 1}n) = n. The upper-bound follows from the
density bound of Theorem 24: for any n ∈ N, V ⊆ {0, 1}n and (V,E) = G (V )

we have that δ (G (V )) ≤
∑

v∈V
deg(v)

|V |
≤ 2|E|

|V |
≤ 2DVC(V )

n < 2VC(V ). �

The Kuzmin-Warmuth degree conjecture and density bounds are naturally
related.

Proposition 49 The Kuzmin-Warmuth minimum degree conjecture [17] is
true iff κ ≤ 1.

Corollary 50 κ ≥ 1.1.

PROOF. The example families Vi, i ∈ N, of Theorem 43, Corollary 46 satisfy
deg(G(Vi))

VC(Vi)
= 1.1. �

The classic density bound and the counter-examples to the degree conjecture
lead to upper and lower bounds on the uniform degree-VC ratio respectively.
A natural question is whether these bounds can be improved.
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6 Consequences for sample compression

Kuzmin and Warmuth [17] proposed the elegant Peeling algorithm (Algo-
rithm 3) and conjectured that it is an unlabeled d-compression scheme for
d-maximum classes. Given V ⊆ {0, 1}n and k ≤ n, one k-peels V by succes-
sively removing vertices of degree less than k from V , at each step removing
a minimum-degree vertex. A successful peeling ultimately reaches ∅. At each
stage the currently peeled vertex is assigned its present incident dimensions
as its representative. Thus a k-peeled V admits a mapping r from concepts of
V to representatives of size at most k.

Algorithm 3 The Min-Peeling Algorithm of [17]

Given: C ⊆ {0, 1}X with |X | <∞
Returns: a representation mapping r for C

G←− G (ΠX (C)) ;
while C 6= ∅ do

(v, c) ←− a minimum-degree vertex in G and the concept of C in that
vertex’s version space ;
r(c) ←− IG(v) ;
(G,C)←− (G\{v}, C\{c}) ;

end while
return r ;

Kuzmin and Warmuth’s minimum degree conjecture [17] predicted that every
VC-dimension d class has a one-inclusion graph with minimum degree δ ≤ d.
If this were true then every d-dimensional class would have a d-peeling. As a
refinement to this conjecture, Kuzmin and Warmuth also conjectured that Dd

n

bounds the density of all one-inclusion graphs and that any graph G of VC-
dimension d in the n-cube with dens (G) ≤ Dd

n has δ (G) ≤ Dd
n. Although we

have verified the Dd
n density bound with Theorem 24 our counter-examples in

Section 5 negatively resolve both minimum degree conjectures. Note, however,
that our examples are not maximum classes and so it is still possible that
Peeling is a valid maximum unlabeled d-compression scheme.

An immediate consequence of a proof of the correctness of peeling maximum
classes (together with our minimum degree counter-examples) would be an
impossibility statement for embedding maximal classes in certain maximum
classes, giving a lower bound on the quantity in Problem 14.

Proposition 51 (Peeling implies emedding can increase VC-dim) If
every maximum class of VC-dimension d in the n-cube can be d-peeled, then
there exists a maximal class V which cannot be embedded in any maximum
class of VC-dimension smaller than κ · VC(V ). In particular, for each i ∈ N

there exist maximal classes of VC-dimension 10i that could not be embedding
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in any maximum class of VC-dimension equal to or smaller than 11i.

PROOF. Suppose that d-maximum classes could be d-peeled and assume
that it were possible to embed a maximal class L of minimum degree δ > d
in a d-maximum class M . Then d-peeling the M would proceed by iteratively
removing minimum degree vertices, each of degree at most d. Eventually a
minimum degree vertex will come from the embedding of L; consider the first
such vertex. It will have degree at least δ > d and so it follows that M could
not be d-peeled. Thus any maximal class embeddable in a d-maximum class
must have minimum degree at most d. The particular 10i-maximal classes can
be found by adding concepts to the examples of Section 5. �

7 Expected risk bounds for multiclass prediction

As in the k = 1 case, the key to developing the multiclass one-inclusion mistake
bound is in bounding hypergraph density. We proceed by shifting a graph
induced by the one-inclusion hypergraph.

Theorem 52 (One-inclusion hypergraph density bound) For any
k, n ∈ N and V ⊆ {0, . . . , k}n, the one-inclusion hypergraph (V,E) = G (V )

satisfies |E|
|V |
≤ ΨP-dim (V ).

PROOF. We begin by replacing the hyperedge structure E with a related
edge structure E ′. Two vertices u,v ∈ V are connected in the graph (V,E ′)
iff there exists an i ∈ [n] such that u,v differ only at i and no w ∈ V exists
such that ui < wi < vi and wj = uj = vj on [n]\{i}. Trivially

|E|

|V |
≤
|E ′|

|V |
≤
k|E|

|V |
. (7)

Consider now shifting vertex v ∈ V at shift label t ∈ [k] along shift coordinate
s ∈ [n] by

Ss,t(v;V )=vs(v
′
s)

where

vs(i) = (v1, . . . , vs−1, i, vs+1, . . . , vn) for i ∈ {0, . . . , k}

v′s =







min
{

x ∈ {0, . . . , vs}
∣

∣

∣vs(x) /∈ V or x = vs
}

if vs = t

vs otherwise
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We shift V on s at t as usual; we shift V on s alone by bubbling vertices down
to fill gaps below:

Ss,t(V ) = {Ss,t(v;V ) | v ∈ V }

Ss(V ) =Ss,k(Ss,k−1(. . . Ss,1(V ))) .

Let Ss(E
′) denote the edge-set induced by Ss(V ). The mapping Ss on a vertex-

set is injective implying that

|Ss(V )|= |V | . (8)

Consider any {u,v} ∈ E ′ with i ∈ [n] denoting the index on which u,v differ.
If i = s then no other vertex w ∈ V can come between u and v during
shifting by construction of E ′, so {Ss(u;V ), Ss(v;V )} ∈ Ss(E

′). Now suppose
that i 6= s. If both vertices shift down by the same number of labels then
they remain connected in Ss(E

′). Otherwise assume WLOG that Ss(u;V )s <
Ss(v;V )s then the shifted vertices will lose their edge, however since vs did
not shift down to Ss(u;V )s there must have been some w ∈ V different from
u on {i, s} such that ws < vs with Ss(w;V )s = Ss(u;V )s. Thus, Ss(w;V ) and
Ss(u;V ) differ only on {i} and a new edge {Ss(w;V ), Ss(u;V )} is in Ss(E

′)
that was not in E ′ (otherwise u would not have shifted). Thus

|Ss(E
′)| ≥ |E ′| . (9)

Suppose that I ⊆ [n] is ΨP -shattered by Ss(V ). If s /∈ I then ΠI (Ss(V )) =
ΠI (V ) and I is ΨP -shattered by V . If s ∈ I then V ΨP -shatters I. Consider
witnesses of Ss(V )’s ΨP -shattering of I equal to 1 at s, taking each value
in {0, 1}|I|−1 on I\{s}. These were not shifted and so are witnesses for V .
Since these vertices were not shifted they were blocked by vertices of V of
equal values on I\{s} but equal to 0 at s. These are the remaining half of the
witnesses of V ’s ΨP -shattering of I. Thus

Ss(V ) ΨP -shatters I ⊆ [n]⇒V ΨP -shatters I . (10)

In a finite number of shifts starting from (V,E ′), a closed-below family W
with induced edge-set F will be reached. If I ⊆ [n] is ΨP -shattered by W
and |I| = d = ΨP-dim (W ), then since W is closed-below the translation vec-
tor (ψP,1, . . . , ψP,1) (·) = (1 [· < 1] , . . . , 1 [· < 1]) must witness this shattering.
Hence each w ∈W has at most d non-zero components. Counting edges in F
by upper-adjoining vertices we have proved that

(V,E ′) finitely shifts to closed-below graph (W,F )

s.t. |F | ≤ |W | ·ΨP-dim (W ) . (11)
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Combining properties (7)–(11) we have that |E|
|V |
≤ |E′|

|V |
≤ |F |

|W |
≤ ΨP-dim (W ) ≤

ΨP-dim (V ). �
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Fig. 7. The graph induced by the
one-inclusion hypergraph of Figure 1,
for the shifting process in Theo-
rem 52. The graph’s density increases
to 14

12 and pseudo-dimension remains
fixed.
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Fig. 8. The closed-below fixed-point
reached by shifting the graph in Fig-
ure 7. The graph’s density further in-
creases to 16

12 while the vertex-set’s
pseudo-dimension does not increase
(it remains at 2).

Example 53 Consider the class V ⊂ {0, 1, 2}3 of Example 9, with one-
inclusion hypergraph displayed in Figure 1. G (V ) has density 11

12
while

ΨP-dim (V ) = 2. To illustrate the shifting process in the proof of Theorem 52,
consider Figures 7 and 8. The former depicts the graph induced by the hyper-
graph G (V ); it has density 14

12
≥ 11

12
and dimension ΨP-dim (V ). The latter

figure depicts a closed-below fixed point reached by shifting on x3 at 1, x3 at
2, x1 at 1, x2 at 1 and finally on x2 at 2. The fixed-point graph has density
16
12
≥ 14

12
and dimension 2 ≤ ΨP-dim (V ).

The remaining arguments from the k = 1 case of [13,12] now imply the mul-
ticlass mistake bound.

Theorem 54 (One-inclusion multiclass mistake bounds) Consider
any k, n ∈ N and class F ⊆ {0, . . . , k}X with ΨP-dim (F) <∞. The multiclass
one-inclusion prediction strategy satisfies M̂QG,F ,F(n) ≤ ΨP-dim (F) /n.

7.1 Proof of the general multiclass mistake bound

We begin with the generalization of Lemma 2 [13, Corollary 2.1].

Lemma 55 For any n > 1, k ∈ N, any F ⊆ {0, . . . , k}X and any determinis-

tic prediction strategy Q, M̂Q,F(n) ≤
ˆ̂
MQ,F(n).

33



PROOF. For initially fixed f ∈ F , permutation σ ∈ Sn and distribution P
on X , exchangeability of P n and linearity of expectation imply

EPn [1 [Q (sam ((X1, . . . , Xn−1) , f) , Xn) 6= f(Xn)]]

= EPn

[

1
[

Q
(

sam
((

Xσ(1), . . . , Xσ(n−1)

)

, f
)

, Xσ(n)

)

6= f
(

Xσ(n)

)]]

= EPn





1

n!

∑

σ∈Sn

1
[

Q
(

sam
((

Xσ(1), . . . , Xσ(n−1)

)

, f
)

, Xσ(n)

)

6= f
(

Xσ(n)

)]





≤ sup
x∈Xn

1

n!

∑

σ∈Sn

1
[

Q
(

sam
((

xσ(1), . . . , xσ(n−1)

)

, f
)

, xσ(n)

)

6= f
(

xσ(n)

)]

.

Taking the supremum over F of both sides of the inequality completes the
proof. �

We now generalize [13, Theorem 2.3] to derive multiclass permutation mistake
bounds from directed one-inclusion hypergraph maximum outdegree.

Lemma 56 Consider any F ⊆ {0, . . . , k}X . If ∆(V ) upper-bounds the max-

imum outdegree of
−−−→
G (V ) for any V ⊆ {0, . . . , k}n under some understood

orientation strategy 3 , then
ˆ̂
MQG,F ,F(n) ≤ sup

x∈Xn
∆(Πx(F))

n
for all n > 1.

PROOF. Observe for fixed f ∈ F , x and sample-order permutation σ ∈
Sn, that given sam

((

xσ(1), . . . , xσ(n−1)

)

, f
)

strategy QG,F makes a mistake on

xσ(n) iff v = (f(x1), . . . , f(xn)) has an out-going edge in the xσ(n)
th direction.

Secondly observe that xi appears in n−1 of the n! permutations of x. Thus

1

n!

∑

σ∈Sn

1
[

QG,F

(

sam
((

xσ(1), . . . , xσ(n−1)

)

, f
)

, xσ(n)

)

6= f
(

xσ(n)

)]

≤
outdeg ((f (x1) , . . . , f (xn)))

n
.

And taking suprema of both sides leads to

ˆ̂
MQG,F ,F ≤ sup

x∈Xn

sup
f∈F

outdeg ((f (x1) , . . . , f (xn)))

n
= sup

x∈Xn

∆ (Πx (F))

n
.

�

3 Notice that the way we orient is unimportant, just that ∆ is a bound on outdegree
that depends only on V .
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Next we follow [12] in a non-constructive orientation of G (Πx (F)).

Lemma 57 For any V ⊆ {0, . . . , k}n the edges of one-inclusion hypergraph

G (V ) = (V,E) can be oriented to give directed one-inclusion hypergraph
−−−→
G (V )

with maximum outdegree at most ⌈maxdens (G (V ))⌉, where maxdens (G) is
the maximum density of all subgraphs of (hyper)graph G.

PROOF. The result follows from an application of Hall’s Theorem [11] to
subgraphs of the bipartite graph depicted in Figure 9. We construct the bi-
partite graph (Vb, Eb) by taking vertices Vb = E ∪ V (1) ∪ . . . ∪ V (d), where
V (1), . . . , V (d) are d = maxdens (G (V )) copies of the hypergraph’s vertex-set
V . Then (w(1), w(2)) ∈ Vb × Vb is in undirected edge-set Eb iff there exists
i, j ∈ {1, 2} and v ∈ V s.t. i 6= j, w(i) is one of the d copies of v, and
v ∈ w(j) ∈ E. Denote the neighbors of a vertex v ∈ Vb by Γb (v) ⊆ Vb.

(d)

e
1

e
1

e
q

1
v
v

v

2

p

(d)

(d)

(d)

1
v(1)

v(1)

v(1)

2

p

E

V
(1)

V

Fig. 9. The bipartite graph from the proof of Lemma 57. The vertex
partitions are (on the left) the hyperedges of the one-inclusion hy-
pergraph and (on the right) maxdensity-many copies of the vertices
of the one-inclusion hypergraph. Each one-inclusion hyperedge is
connected, in the bipartite graph, to the copies of its neighboring
one-inclusion vertices.

Consider now any subgraph (V ′, E ′) of G (V ) induced by selecting q = |E ′| ≤
|E| hyperedges from the one-inclusion hypergraph, so that all vertices of V ′

have positive degree in the subgraph—isolated vertices are removed. Then

∣

∣

∣

∣

∣

∣

⋃

e∈E′

Γb (e)

∣

∣

∣

∣

∣

∣

= d|V ′|

≥ |E ′|

= q .
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The first equality follows from the fact that the set of vertices adjoining E ′ in
(V ′, E ′) is exactly V ′ and so in (Vb, Eb) the set of adjoining vertices are the d
copies of V ′. The inequality is the statement dens ((V ′, E ′)) ≤ d rearranged.
Thus the family of |E| neighbor sets SE = {Γb (e) | e ∈ E} satisfies the follow-
ing: for all 1 ≤ q ≤ |E|, the union of any q of the sets in SE contains at least
q distinct elements. Thus SE satisfies the conditions of Hall’s Theorem [11]
so that each set of neighbors Γb (e) has a distinct representative v(i)

e ∈ Γb (e)
which is the ith copy of some (k + 1)-valued vector ve ∈ V that adjoins e
in G (V ). Each such ve provides an orientation for hyperedge e (arbitrarily)
directed out from v. As the neighbor set representatives v(i)

e are unique, when
treating different copies of the same G (V ) vertex as distinct, no one-inclusion
hypergraph vertex v can be the representative of more than d hyperedges.
Thus the outdegree for each v ∈ V in G (V ) is at most d. �

Finally note that Pollard dimension is non-decreasing with inclusion, so all
subgraphs of a one-inclusion hypergraph G (V ) have Pollard pseudo-dimension
at most ΨP-dim (V ).

Combining this observation with Lemmas 55–57 and Theorem 52 we see that

M̂QG,F ,F(n)≤
ˆ̂
MQG,F ,F(n)

≤ sup
x∈Xn

⌈maxdens (Πx (F))⌉

n

≤ sup
x∈Xn

ΨP-dim (Πx (F))

n

≤
ΨP-dim (F)

n
.

7.2 Towards a bound in terms of the Graph dimension

In addition to Theorem 54 the following analogous density bound is possible
(implying the analogous mistake bound), but is in terms of the ΨG-dim instead
of the Pollard pseudo-dimension. The result holds for the special case of all
k ∈ N and n = 2. A general bound of this type would allow more direct
comparison with the PAC-based result of Theorem 7.

Lemma 58 For any k ∈ N and family V ⊆ {0, . . . , k}2, dens (G (V )) ≤
ΨG-dim (V ).

PROOF. Fix n = 2 and k ∈ N. We will show that for each V ⊆ {0, . . . , k}n

there exists a translation vector ψ ∈ Ψn
G such that dens (G (V )) ≤
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dens (G (ψ(V ))) which by Lemma 16 is in turn bounded above by VC(ψ(V )) ≤
ΨG-dim (V ).

ψ

1

x 2

0

0

2

1

x’

x’1

1 B

D

A

C

i

0

k

i

1

2

0 k

D

D

A

C D

B

C D

B

x

Fig. 10. The left-hand figure shows the pre-images for each of the
possible elements of the image of V ⊆ {0, . . . , k}2 under some trans-
lation induced by a pair (i1, i2) ∈ {0, . . . , k}

2.

We use translations ψ ∈ Ψn
G and the thresholding indices that induce them

(i1, . . . , in) ∈ {0, . . . , k}
n inter-changeably.

Let ψ̂ ∈ Ψ2
G, with its equivalent representation (̂i1, î2) ∈ {0, . . . , k}

2, produce
a maximally dense translation ψ̂ ∈ arg maxψ∈Ψ2

G
dens (G (ψ(V ))). At least one

such translation must exist as |Ψ2
G| = (k + 1)2 < ∞. We split on the density

of the one-inclusion graph of the translated T = ψ̂(V ) (see Table 1), using
the notation of Figure 10 for referring to the elements of T : A = (1, 1), B =
(0, 1), C = (1, 0), D = (0, 0).

Table 1
Enumeration of the possible densities of the translated one-inclusion graph.

dens (G (T )) T

0 φ, {A}, {B}, {C}, {D}, {A,D}, {B,C}

1
2 {A,B}, {A,C}, {D,B}, {D,C}

2
3 {A,B,C}, {A,B,D}, {A,C,D}, {B,C, D}

1 {A,B,C,D}

Suppose that dens (G (T )) = 0. Assume that |E|
|V |

> 0. Then |E| ≥ 1, and we

know that there is a row i (column j) hyperedge which adjoins at least two
vertices along that row (column). This is a contradiction, as we could have
positioned (î1, î2) over either of these vertices to get {A,B} ⊆ T ({A,C} ⊆ T )
and as a consequence dens (G (T )) ≥ 0.5.

Suppose that dens (G (T )) = 1
2

and assume that |E|
|V |

> 1
2
. Note that for any non-

empty hypergraph (V,E), 2 |E|
|V |
≤ 1

|V |

∑

v∈V deg(v). Thus at least one vertex in
V must have degree 2 or more. This contradicts our assumption, as it implies
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that we could have positioned (î1, î2) over this vertex to have {A,B,C} ⊆ T
which would imply dens (G (T )) ≥ 2

3
.

Suppose that dens (G (T )) = 2
3

and assume that |E|
|V |

> 2
3
. Again there must be

at least one vertex in V of degree at least 2. Assume there was just one such
vertex, then counting |E| ≤ |V |+1

2
≤ 2|V |

3
provided |V | ≥ 3 which is the case by

the assumed density on V . This is a contradiction, so there must be at least
two vertices of degree 2 or more, in V . But then we could have placed (î1, î2)
over one of these, to get the full cube {A,B,C,D} = T .

Finally note that dens (G (V )) ≤ 1 always holds, so combining cases we have

proven that for n = 2 |E|
|V |
≤ dens (G (T )). �

7.3 A general lower bound

We now show that the general multiclass mistake bound of Theorem 54 is
optimal to within an O(log k) factor, noting that ΨN is smaller than ΨP by
at most such a factor [2, Theorem 10].

Definition 59 We call a family F ⊆ {0, . . . , k}X trivial if either |F| = 1
or there exist no x1, x2 ∈ X and f1, f2 ∈ F such that f1(x1) 6= f2(x1) and
f1(x2) = f2(x2).

Theorem 60 Consider any deterministic or randomized prediction strategy
Q and any F ⊆ {0, . . . , k}X that has 2 ≤ ΨN-dim (F) < ∞ or is non-
trivial with ΨN-dim (F) < 2. Then for all n > ΨN-dim (F), M̂Q,F(n) ≥
max{1,ΨN-dim (F)− 1}/(2en).

PROOF. Following [6], we use the probabilistic method to prove the exis-
tence of a target in F for which prediction under a distribution P supported
by a ΨN -shattered subset is hard. Consider d = ΨN-dim (F) ≥ 2 with n > d.
Fix a Z = {z1, . . . , zd} ΨN -shattered by F and then a subset FZ ⊆ F of 2d

functions that ΨN -shatters Z. Define a distribution P on X by P ({zi}) = n−1

for each i ∈ [d−1], P ({zd}) = 1−(d−1)n−1 and P ({x}) = 0 for all x ∈ X\Z.
Observe that

PrPn (∀i ∈ [n− 1], Xn 6= Xi)≥PrPn (Xn 6= zd, ∀i ∈ [n− 1], Xn 6= Xi)

=
d− 1

n

(

1−
1

n

)n−1

≥
d− 1

en
.
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For any f ∈ FZ and x ∈ Zn with xn 6= xi for all i ∈ [n − 1], exactly half
of the functions in FZ consistent with sam ((x1, . . . , xn−1), f) output some
i ∈ {0, . . . , k} on xn and the remaining half output some j ∈ {0, . . . , k}\{i}.
Thus EUnif(FZ ) [1 [Q(sam ((x1, . . . , xn−1), F ) , xn) 6= F (xn)]] = 0.5 for such an
x and so

M̂Q,F ≥ M̂Q,FZ

≥EUnif(FZ)×Pn [1 [Q(sam ((X1, . . . , Xn−1), F ) , Xn) 6= F (Xn)]]

≥
d− 1

2en
.

The similar case of d < 2 is omitted here and shows that there is a distribution
P on X and function f ∈ F such that

EPn [1 [Q(sam ((X1, . . . , Xn−1), f) , Xn) 6= f(Xn)]] ≥ (2en)−1 .

�

8 Conclusions and open problems

In this paper we have developed new shifting machinery and tightened the
binary one-inclusion mistake bound from d/n to Dd

n/n (⌈Dd
n⌉/n for the deter-

ministic strategy). This was made possible through a symmetrization density
bound, a result recently conjectured by Kuzmin and Warmuth [17]. We have
described the k-class generalization of the prediction learning model and de-
rived a mistake bound for the multiclass one-inclusion prediction strategy that
improves on previous PAC-based expected risk bounds by O(logn) and that
is within O(log k) of optimal. We also presented several characterizations and
properties of one-inclusion graphs and their vertex-sets: a colorability charac-
terization of one-inclusion isomorphic graphs, the complementary character-
izations of maximum (due to Floyd [8]) and maximal classes, and the alge-
braic topological property of maximum classes that d-maximum classes are
d-contractible simplicial complexes. Finally we settled the minimum degree
conjecture of Kuzmin and Warmuth [17] as being false, and introduced the
uniform VC-degree ratio κ as a measure of how greatly a subset’s dimension
and minimum degree can differ.

Here shifting with invariance to the shattering of a single set was described,
however we are aware of invariance to more complex shatterings. The sym-
metrization method of Theorem 24 can be extended over subgroups G ⊂ Sn
to gain tighter density bounds.
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In addition to the general multiclass mistake bound of ΨP -dim(F)/n (Theo-
rem 54), Lemma 58 provides the analogous bound in terms of the Graph di-
mension for all k ∈ N but only the special case of n = 2. It is open as to whether
this result generalizes to n ∈ N. While a general ΨG-based bound would allow
direct comparison with the PAC-based expected risk bound, it should also
be noted that ΨP and ΨG are in fact incomparable—neither ΨG ≤ ΨP nor
ΨP ≤ ΨG singly holds for all classes [2, Theorem 1].

While Theorem 24 resolves the conjectured density bound of Kuzmin and War-
muth [17], the remainder of the conjectured correctness proof for the Peeling
compression scheme (and also the less refined minimum degree conjecture) is
shown to be false. A consequence of a proof of correctness for d-peeling maxi-
mum classes of VC-dimension d would be an impossibility result for generally
embedding maximal classes in maximum classes with only a constant additive
increase in VC-dimension.
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[10] B. Gärtner, E. Welzl, Vapnik-Chervonenkis Dimension and (Pseudo-)
Hyperplane Arrangements. Discrete & Computational Geometry, 12 (1994)
399–432.

[11] P. Hall, On representatives of subsets. Journal of the London Mathematical
Society, 10 (1935) 26–30.

[12] D. Haussler, Sphere packing numbers for subsets of the boolean n-cube with
bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory
(A) 69(2) (1995) 217–232.

[13] D. Haussler, N. Littlestone, M.K. Warmuth, Predicting {0, 1} functions on
randomly drawn points. Information and Computation, 115(2) (1994) 284–293.
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A Proof of Theorem 25

The proof corresponds exactly to the proof of Theorem 10 [13, Theorem 2.3],
using the symmetrization graph density bounded of Theorem 24 in place of
the original density bound of Lemma 16 [13, Lemma 2.4]. We provide a high-
level sketch of how the results are chained in [13]. The proof of Theorem 54
contains these results, generalized, in full detail.

For the deterministic strategy, a simple argument [13, Theorem 2.3] shows
that this worst-case average over permutations is at most the supremum over
x ∈ X n of the maximum outdegree of (the oriented) G (Πx (F)), over n. The
essential ingredients are that the strategy makes a mistake iff the correct vertex
in the projected graph (e.g. the vertex corresponding to (f(x1), . . . , f(xn))) has
an out-going edge in the nth direction—or that under permutation σ of the
n-sample there is such an edge in the σ(n)th direction. Secondly xi appears
last in the sample in n−1 of the n! permutations of the sample. Either the
network flow construction of [13] or the application of Hall’s Theorem [11]
of [12] then show that G (V ) can be oriented so that its maximum outdegree is
at most ⌈maxdens (G (V ))⌉ where maxdens (G) denotes the maximum density
of all subgraphs of (hyper)graph G. Theorem 24 then bounds the density of
all subgraphs of V by Dd

n, as each has VC-dimension at most VC(V ).

The randomized strategy follows roughly the same argument. In place of edge-
orientation the goal is to assign a distribution on each edge—a probability on
each of the two adjoining vertices. The same argument that upper-bounds
ˆ̂
M(n) for the deterministic strategy, produces an upper-bound for the ran-
domized strategy in terms of the sum of the out-going probabilities from a
vertex, over all vertices. The network flow construction assigns probabilities
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so that each vertex’s total probability is at most the maximum subgraph den-
sity. Again, Theorem 24 implies that this is in turn at most Dd

n.

Lemma 2 [13, Corollary 2.1] finally leads to the mistake bounds for both cases.
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